Skip to main content

Carbon Acquisition by Microalgae

  • Chapter
  • First Online:
The Physiology of Microalgae

Part of the book series: Developments in Applied Phycology ((DAPH,volume 6))

Abstract

Autotrophic assimilation of inorganic C in cyanobacteria and eukaryotic microalgae involves the use of CO2 by ribulose bisphosphate carboxylase-oxygenase (Rubisco) and the Photosynthetic Carbon Reduction Cycle. The kinetic characteristics of the Form IB and Form ID Rubiscos of a few eukaryotic microalgae allow photosynthesis using diffusive entry of CO2 to Rubisco from present-day CO2 levels in air, with concomitant Rubisco oxygenase activity and phosphoglycolate metabolism by (typically) the Photorespiratory Carbon Oxidation Cycle (PCOC). All cyanobacteria and dinoflagellates, and most other eukaryotic microalgae, have CO2 concentrating mechanisms (CCMs). These are generally biophysical CCMs involving active transport across (a) membrane(s) of one or more of HCO3 , CO2 and H+. There is very limited evidence for a biochemical CCM based on (possibly) C3–C4 intermediate-like photosynthetic C metabolism. CCM expression and operation interact with the supply of light and other resources needed for growth. CCMs (with residual Rubisco oxygenase and PCOC activity) have a significant energy cost, as does the alternative of diffusive CO2 entry and consequent Rubisco oxygenase and PCOC activity. Some cyanobacteria and eukaryotic microalgae can take up dissolved organic matter (osmochemoorganotrophy or combined with photosynthesis in osmomixotrophy) or, for some eukaryotic microalgae, phagochemoorganotrophy or, combined with photosynthesis, in phagomixotrophy. Regardless of whether the organic carbon needed for growth is obtained by photolithotrophy or (mixo)chemoorganotrophy, anaplerotic inorganic C assimilation is needed to supply C skeletons for synthesis of a range of cell components; this (as ‘dark fixation’) is the only inorganic C assimilation occurring in the dark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wherever possible the currently accepted names for species are used. The name used in the paper cited is also indicated. For details of names see chapter “Systematics, Taxonomy and Species Names: Do They Matter?” of this book (Borowitzka 2016).

References

  • Amoroso G, Sültemeyer DF, Thyssen C, Fock HP (1998) Uptake of HCO3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiol 116:193–201

    Article  CAS  PubMed Central  Google Scholar 

  • Apt KE, Allnutt FCT, Kyle DJ, Lippmeier JC (2011) Trophic conversion of obligate phototrophic algae through metabolic engineering. USA Patent US7939710

    Google Scholar 

  • Bach LT, Mackinder LCM, Schulz KG, Wheeler G, Schroeder DC, Brownlee C, Riebesell U (2013) Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytol 199:121–134

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and co-evolution of Rubisco, plastids, pyrenoids and chloroplast-based CO2-concentrating mechanisms in the algae. Can J Bot 76:1052–1071

    CAS  Google Scholar 

  • Beardall J, Raven JA (2013a) Limits to phototrophic growth in dense culture: CO2 supply and light. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 91–97

    Chapter  Google Scholar 

  • Beardall J, Raven JA (2013b) Calcification and ocean acidification: new insights from the coccolithophore Emiliania huxleyi. New Phytol 199:1–3

    Article  PubMed  Google Scholar 

  • Beardall J, Mukerji D, Glover HE, Morris I (1976) The path of carbon in photosynthesis by marine phytoplankton. J Phycol 12:409–417

    CAS  Google Scholar 

  • Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, Falkowski PG, Field CB, Frouin R, Esaias WE, Kolber DD, Pollack NH (2001) Biospheric primary production during an ENSO transition. Science 291:2594–2597

    Article  CAS  PubMed  Google Scholar 

  • Blanc G et al (2012) The genome of the polar eukaryotic alga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39. doi:10.1186/gb-2012-13-5-v39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank C, Sanchez-Baracaldo P (2010) Morphological and ecological innovations in cyanobacteria – a key to understanding the rise in atmospheric oxygen. Geobiology 8:1–23

    Article  CAS  PubMed  Google Scholar 

  • Boller AJ, Thomas PJ, Cavanaugh CM, Scott KM (2011) Low stable isotope fractionation by coccolithophore RubisCO. Geochim Cosmochim Acta 75:7200–7207

    Article  CAS  Google Scholar 

  • Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681

    Google Scholar 

  • Clement R, Dimnet L, Maberly SC, Gontero B (2015) The nature of the CO2-concentrating mechanisms in a marine diatom, Thalassiosira pseudonana. New Phytol. doi:10.1111/nph.13728

    Google Scholar 

  • Droop MR (1974) Heterotrophy of carbon. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 530–559

    Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, 512 pp

    Google Scholar 

  • Flynn KJ, Blackford JC, Baird ME, Raven JA, Clark DR, Beardall J, Brownlee C, Fabian H, Wheeler GL (2012) Changes in pH at the exterior surface of plankton with ocean acidification. Nat Clim Chang 2:510–513

    Article  CAS  Google Scholar 

  • Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM, Hansen PJ, Granéli E, Burkholder JM (2013) A case of mistaken identification: the importance of mixotrophs and the clarification of plankton functional-classification. J Plankton Res 35:3–11

    Article  Google Scholar 

  • Granum E, Myklestad SM (1999) Effects of NH4 + assimilation on dark carbon fixation and β-1,3-glucan metabolism in the marine diatom Skeletonema costatum (Bacillariophyceae). J Phycol 35:1191–1199

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Haimovich-Dayan M, Garfinkel N, Ewe D, Marcus Y, Gruber A, Wagner H, Kroth PG, Kaplan A (2013) The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. New Phytol 197:177–185

    Article  CAS  PubMed  Google Scholar 

  • Hanson TE, Tabita FR (2001) A ribulose 1,5- bisphosphate carboxylase/oxygenase (RubisCO)–like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci U S A 98:4397–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkinson BM, Dupont CL, Allen AE, Morel FMM (2011) Efficiency of the CO2-concentrating mechanism of diatoms. Proc Natl Acad Sci U S A 108:3830–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston AM, Raven JA, Beardall J, Leegood RC (2001) C4 photosynthesis in a marine diatom. Nature 412:40–41

    Article  CAS  PubMed  Google Scholar 

  • Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T et al (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3(1):e1426. doi:10.1371/journal.pone.0001426

    Article  PubMed  PubMed Central  Google Scholar 

  • Leggat W, Badger MR, Yellowlees DC (1999) Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losh JL, Young JN, Morel FMM (2013) Rubisco is a small fraction of total protein in marine phytoplankton. New Phytol 198:52–58

    Article  CAS  PubMed  Google Scholar 

  • Maberly SC, Ball LA, Raven JA, Sültemeyer D (2009) Inorganic carbon acquisition by chrysophytes. J Phycol 45:1052–1061

    Article  CAS  Google Scholar 

  • Maberly SC, Courcelle C, Groben R, Gontero B (2010) Phylogenetically-based variation in the regulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase, in algae. J Exp Bot 61:735–745

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18

    Article  CAS  PubMed  Google Scholar 

  • Maruyama S, Kim C (2013) A modern descendant of early green algal phagotrophs. Curr Biol 23:1081–1084

    Article  CAS  PubMed  Google Scholar 

  • Mitra A, Flynn KJ, Nurkholder JM, Berge T, Calbet A, Raven JA, Granéli E, Glibert PM, Hansen PJ, Stoecker FK, Thingstad F, Tillman U, Väge S, Wilken S, Zoukov MV (2014) The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005

    Article  Google Scholar 

  • Morel FMM, Cox EH, Kraepiel AML, Lane TW, Milligan AJ, Schaperdoth I, Reinfelder JR, Tortell PD (2002) Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii. Funct Plant Biol 29:301–308

    Article  CAS  Google Scholar 

  • Morris I, Beardall J, Mukerji D (1978) The mechanisms of carbon fixation in phytoplankton. Mitt Internat Verein Limnol 21:174–183

    CAS  Google Scholar 

  • Munoz J, Merrett MJ (1989) Inorganic carbon transport in some marine eukaryotic microalgae. Planta 178:450–455

    Article  CAS  PubMed  Google Scholar 

  • Omata T, Price GD, Badger MR, Okamura M, Gohta S, Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci U S A 96:13571–13576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmqvist K (2000) Carbon economy in lichens. New Phytol 148:11–36

    Article  CAS  Google Scholar 

  • Price GD, Maeda S, Omata T, Badger M (2002) Modes of active inorganic carbon uptake in the cyanobacterium Synechococcus sp. PCC7942. Funct Plant Biol 29:131–149

    Article  CAS  Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci U S A 101:18228–18233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BJ (2008) Advances in understanding the cyanobacterial CO2- concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (1974) Carbon dioxide fixation. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 433–455

    Google Scholar 

  • Raven JA (1976a) Transport in algal cells. In: Lüttge U, Pitman MG (eds) Transport in cells and tissues, vol New series, Encyclopedia of plant physiology. Springer, Berlin, pp 129–188

    Google Scholar 

  • Raven JA (1976b) Division of labour between chloroplasts and cytoplasm. In: Barber J (ed) The intact chloroplast. Elsevier, Amsterdam, pp 403–443

    Google Scholar 

  • Raven JA (1976c) The quantitative role of ‘dark’ respiratory processes in heterotrophic and photolithotrophic plant growth. Ann Bot 40:587–602

    CAS  Google Scholar 

  • Raven JA (2009) Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquat Microb Ecol 56:177–192

    Article  Google Scholar 

  • Raven JA (2013a) Half a century of pursuing the pervasive proton. Prog Bot 74:3–34

    Article  CAS  Google Scholar 

  • Raven JA (2013b) Rubisco: still the most abundant protein in the world? New Phytol 198:1–3

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (2013c) Cells in cells: symbiosis and continuing phagotrophy. Curr Biol 23:R531

    Google Scholar 

  • Raven JA (2013d) RNA function and phosphorus use in photosynthetic organisms. Front Plant Sci 4:1–13, Article 536

    Article  Google Scholar 

  • Raven JA, Beardall J (2003) CO2 acquisition mechanisms in algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum AWD, Raven JA, Douglas S (eds) Photosynthesis in the algae. Kluwer, Dordrecht, pp 225–244

    Chapter  Google Scholar 

  • Raven JA, Beardall J (2014) CO2 concentrating mechanisms and environmental change. Aquat Bot 118:24–37

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J (2015) The ins and outs of CO2. J Exp Bot. doi:10.1093/jxb/erv451

    Google Scholar 

  • Raven JA, Beardall J (2016) Dark respiration and organic carbon loss. In: Borowitzka MA, Beardall J, Raven J, Beardall J (eds) The physiology of microalgae. Springer, Dordrecht, pp 129–140

    Chapter  Google Scholar 

  • Raven JA, Crawfurd K (2012) Environmental controls on coccolithophore calcification. Mar Ecol Prog Ser 370:137–166

    Article  Google Scholar 

  • Raven JA, Farquhar GD (1990) The influence of N metabolism and organic acid synthesis on the natural abundance of C isotopes in plants. New Phytol 116:505–529

    Article  CAS  Google Scholar 

  • Raven JA, Kübler J, Beardall J (2000) Put out the light, and then put out the light. J Mar Biol Assoc UK 80:1–25

    Article  CAS  Google Scholar 

  • Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans R Soc Lond B 363:2641–2650

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J, Flynn KJ, Maberly SC (2009) Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot 60:3975–3987

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Beardall J, Giordano M, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109:281–296

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Hurd CJ (2012) Ecophysiology of photosynthesis in macroalgae. Photosynth Res 113:105–125

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon concentrating mechanisms and carbon oxidation cycles. Phil Trans R Soc B 367:493–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven JA, Beardall J, Larkum AWD, Sanchez-Baracaldo P (2013) Interactions of photosynthesis with genome size and function. Phil Trans R Soc Lond B 368:20120264

    Article  Google Scholar 

  • Raven JA, Beardall J, Giordano M (2014) Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth Res 121:111–124

    Article  CAS  PubMed  Google Scholar 

  • Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann Rev Mar Sci 3:291–315

    Article  PubMed  Google Scholar 

  • Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999

    Article  CAS  PubMed  Google Scholar 

  • Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of C4 photosynthesis in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacteria which lacks thylakoids. Arch Microbiol 100:419–436

    Article  CAS  Google Scholar 

  • Robbens S, Petersen J, Brinkmann H, Rouzé P, Van de Peer Y (2007) Unique regulation of the Calvin cycle in the ultra-small green alga Ostreococcus. J Mol Evol 64:601–604

    Article  CAS  PubMed  Google Scholar 

  • Roberts K, Granum E, Leegood R, Raven J (2007a) Carbon acquisition by diatoms. Photosynth Res 93:79–88

    Article  CAS  PubMed  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007b) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol 145:230–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rost B, Kranz SA, Richter K-U, Tortell PD (2007) Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton. Limnol Oceanogr Methods 5:328–337

    Article  CAS  Google Scholar 

  • Rotatore C, Colman B (1990) Uptake of inorganic carbon by isolated chloroplasts of the unicellular green alga Chlorella ellipsoidea. Plant Physiol 93:1597–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotatore C, Colman B (1991) The localization of active carbon transport at the plasma membrane in Chlorella ellipsoidea. Can J Bot 69:1025–1031

    Article  CAS  Google Scholar 

  • Schmidt S, Raven JA, Paungfoo-Lonhienne C (2013) The mixotrophic nature of photosynthetic plants. Funct Plant Biol 40:425–438

    Article  CAS  Google Scholar 

  • Scott KM, Henn-Sax M, Longa D, Cavanaugh CM (2007) Kinetic isotope effect and biochemical characteristics of form IA Rubisco from the marine cyanobacterium Prochlorococcus marinus MIT 9313. Limnol Oceanogr 53:2199–2204

    Article  Google Scholar 

  • Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J Biol Chem 277:18658–18664

    Article  CAS  PubMed  Google Scholar 

  • Shiraiwa Y, Danbara A, Yoke K (2004) Characterization of highly oxygen-sensitive photosynthesis in coccolithophorids. Jpn J Phycol 52(Suppl):87–94

    Google Scholar 

  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    Article  CAS  PubMed  Google Scholar 

  • Spalding MH, Van K, Wang Y, Nakamura Y (2002) Acclimation of Chlamydomonas to changing carbon availability. Funct Plant Biol 29:221–230

    Article  CAS  Google Scholar 

  • Stojkovic S, Beardall J, Matear R (2013) CO2 concentrating mechanisms in three southern hemisphere strains of Emiliania huxleyi. J Phycol 49:670–679

    Article  CAS  Google Scholar 

  • Studer RA, Christin P-A, Williams MA, Orengo CA (2014) Stability-activity trade-offs constrain the adaptive evolution of RubisCO. Proc Natl Acad Sci U S A 111:2222–2228

    Article  Google Scholar 

  • Sültemeyer D (1998) Carbonic anhydrase in eukaryotic algae: characterization, regulation and possible functions during photosynthesis. Can J Bot 76:962–972

    Google Scholar 

  • Sültemeyer DF, Fock HP, Canvin DT (1991) Active uptake of inorganic carbon by Chlamydomonas reinhardtii: evidence for simultaneous transport of HCO3 and CO2 and characterization of active transport. Can J Bot 69:995–1002

    Article  Google Scholar 

  • Tcherkez GG, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases are nearly perfectly optimised. Proc Natl Acad Sci U S A 103:7246–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji Y, Suzuki I, Shiraiwa Y (2009) Photosynthetic carbon assimilation in the coccolithophorid Emiliania huxleyi (Haptophyta): evidence for the predominant operation of the C3 cycle and the contribution of β-carboxylases of the active anaplerotic reaction. Plant Cell Physiol 50:318–329

    Article  CAS  PubMed  Google Scholar 

  • Tsuji Y, Suzuki I, Shiraiwa Y (2012) Enzymological evidence for the function of a plastid-located pyruvate carboxylase in the haptophyte alga Emiliania huxleyi: a novel pathway for the production of C4 compounds. Plant Cell Physiol 53:1043–1052

    Article  CAS  PubMed  Google Scholar 

  • Tyrrell T (2013) On Gaia. Princeton University Press, Princeton

    Book  Google Scholar 

  • van Hunnik E, Amoroso G, Sültemeyer D (2002) Uptake of CO2 and bicarbonate by intact cells and chloroplasts of Tetraedon minimum and Chlamydomonas noctigama. Planta 215:763–769

    Article  PubMed  Google Scholar 

  • Whitney SM, Andrews TJ (1998) The CO2/O2 specificity of single-subunit ribulose-bisphosphate carboxylase from the dinoflagellate, Amphidinium carterae. Aust J Plant Physiol 25:131–138

    Article  CAS  Google Scholar 

  • Whitney S, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer Nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young EB, Beardall J, Giordano M (2001) Investigation of inorganic carbon acquisition by Dunaliella tertiolecta (Chlorophyta) using inhibitors of putative HCO3 utilization pathways. Eur J Phycol 36:81–88

    Google Scholar 

  • Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334:1151–1153

    Article  Google Scholar 

  • Zhang C-C, Jeanjean R, Joliot F (1998) Obligate autotrophy in cyanobacteria: more than a lack of sugar transporters. FEMS Lett 161:285–298

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The University of Dundee is a registered Scottish charity, No. SC015096. John Beardall’s work on inorganic carbon acquisition has been supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Beardall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beardall, J., Raven, J.A. (2016). Carbon Acquisition by Microalgae. In: Borowitzka, M., Beardall, J., Raven, J. (eds) The Physiology of Microalgae. Developments in Applied Phycology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-24945-2_4

Download citation

Publish with us

Policies and ethics