Skip to main content
Log in

Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses?

  • Review
  • Published:
Photosynthetica

Abstract

Chlorophyll (Chl) a fluorescence induction (transient), measured by exposing dark-adapted samples to high light, shows a polyphasic rise, which has been the subject of extensive research over several decades. Several Chl fluorescence parameters based on this transient have been defined, the most widely used being the FV [= (FM–F0)]/FM ratio as a proxy for the maximum quantum yield of PSII photochemistry. However, considerable additional information may be derived from analysis of the shape of the fluorescence transient. In fact, several performance indices (PIs) have been defined, which are suggested to provide information on the structure and function of PSII, as well as on the efficiencies of specific electron transport reactions in the thylakoid membrane. Further, these PIs have been proposed to quantify plant tolerance to stress, such as by high light, drought, high (or low) temperature, or N-deficiency. This is an interesting idea, since the speed of the Chl a fluorescence transient measurement (<1 s) is very suitable for high-throughput phenotyping. In this review, we describe how PIs have been used in the assessment of photosynthetic tolerance to various abiotic stress factors. We synthesize these findings and draw conclusions on the suitability of several PIs in assessing stress responses. Finally, we highlight an alternative method to extract information from fluorescence transients, the Integrated Biomarker Response. This method has been developed to define multi-parametric indices in other scientific fields (e.g., ecology), and may be used to combine Chl a fluorescence data with other proxies characterizing CO2 assimilation, or even growth or grain yield, allowing a more holistic assessment of plant performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABS:

photon flux absorbed by the antenna of PSII units

Area:

area above the OJIP transient

CFI:

chill factor index

Chl:

chlorophyll

CS:

cross section

Cyt:

cytochrome

DF:

driving force

DFI:

drought factor index

DI:

flux of energy dissipation (through processes other than trapping) in the antenna of PSII units

ET:

rate of electron transport from the reduced QA to the intersystem electron acceptors

F0 :

minimum Chl a fluorescence

Fd:

ferredoxin

FI:

fluorescence induction

FM :

maximum Chl a fluorescence

FT :

terminal steady state of Chl a fluorescence

HSI:

heat sensitivity index

I step:

Chl a fluorescence at ~ 30 ms

IBR:

integrated biomarker response

J step:

Chl a fluorescence at ~ 2 ms

K step:

Chl a fluorescence at ~ 0.3 ms

M0 :

initial slope (first 0.3 ms) of the O-J fluorescence rise

NPQ:

nonphotochemical quenching of the excited states of Chl

OEC:

oxygen-evolving complex

P680:

reaction center Chls of PSII

PC:

plastocyanin

Phe:

pheophytin

PSi:

photochemical stress index

PI:

performance index

PILR:

performance index leaf ratio

PQ:

plastoquinone

RE:

rate of electron transport from the reduced QA to the final electron acceptors of PSI

Rfd :

ratio of fluorescence decrease to steady state fluorescence

ROS:

reactive oxygen species

RWC:

relative water content

SFI:

structure-function index

Sm :

normalized area above the OJIP transient

TR:

flux of exciton trapping by active PSII reaction centers leading to QA reduction

ΔVIP :

relative amplitude of the I–P phase of Chl a fluorescence

References

  • Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A. et al.: Responses to salt stress: Adaptive mechanisms.–Agronomy 7: 18, 2017.

    Article  CAS  Google Scholar 

  • Adams III W.W., Zarter C.R., Mueh K.E. et al.: Energy dissipation and photoinhibition: A continuum of photoprotection.–In: Demmig-Adams B., Adams III W.W., Mattoo A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation, and Environment. Pp. 49–64. Springer Science+Business Media B.V., Dordrecht 2008.

    Google Scholar 

  • Adamski J.M., Cargnelutti D., Sperotto R.A. et al.: Identification and physiological characterization of two sister lines of indica rice (Oryza sativa L.) with contrasting levels of cold tolerance.–Can. J. Plant Sci. 96: 197–214, 2016.

    Article  CAS  Google Scholar 

  • Ainsworth E.A., Yendrek C.R., Sitch S. et al.: The effects of ozone on net primary productivity and implications for climate change.–Annu. Rev. Plant Biol. 63: 637–661, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev S.I., Murata N.: Salt stress inhibits photosystem II and I in cynobacteria.–Photosynth. Res. 98: 529–539, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Alloway B.J.: Sources of heavy metals and metalloids in soils.–In: Alloway B. (ed.): Heavy Metals in Soils. Environmental Pollution, Vol. 22. Springer, Dordrecht 2013.

    Chapter  Google Scholar 

  • Appenroth K.J., Stöckel J., Srivastava A. et al.: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements.–Environ. Pollut. 115: 49–64, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo.–Annu. Rev. Plant Biol. 59: 89–113, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Baldassarre V., Cabassi G., Ferrante A.: Use of chlorophyll a fluorescence for evaluating the quality of leafy vegetables.–Aust. J. Crop Sci. 5: 735–741, 2011.

    Google Scholar 

  • Bazzaz M.B., Govindjee: Effects of cadmium nitrate on spectral characteristics and light reactions of chloroplasts.–Environ. Lett. 6: 1–12, 1974a.

    Article  PubMed  CAS  Google Scholar 

  • Bazzaz M.B., Govindjee: Effects of lead chloride on chloroplast reactions.–Environ. Lett. 6: 175–191, 1974b.

    Article  PubMed  CAS  Google Scholar 

  • Beliaeff B., Burgeot T.: Integrated biomarker response: a useful tool for ecological risk assessment.–Environ. Toxicol. Chem. 21: 1316–1322, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.–Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Blankenship R.E.: Molecular Mechanisms of Photosynthesis, 2nd ed. Pp. 312. Blackwell-John Wiley, Oxford 2014.

    Google Scholar 

  • Blevins D.G., Lukaszewski K.M.: Boron in plant structure and function.–Annu. Rev. Plant Phys. 49: 481–500, 1998.

    Article  CAS  Google Scholar 

  • Bohnert H.J., Nelson D.E., Jensen R.G.: Adaptations to environmental stresses.–Plant Cell 7: 1099–1111, 1995.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boureima S. Oukarroum A., Diouf M. et al.: Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence.–Environ. Exp. Bot. 81: 37–43, 2012.

    Article  CAS  Google Scholar 

  • Broeg K., Lehtonen K.K.: Indices for the assessment of environmental pollution of the Baltic Sea coasts: Integrated assessment of a multi-biomarker approach.–Mar. Pollut. Bull. 53: 508–522, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Bussotti F., Agati G., Desotgiu R. et al.: Ozone foliar symptoms in woody plants assessed with ultrastructural and fluorescence analysis.–New Phytol. 166: 941–955, 2005.

    Article  PubMed  Google Scholar 

  • Bussotti F., Strasser R.J., Schaub M.: Photosynthetic behavior of woody species under high ozone exposure probed with the JIPtest: A review.–Environ. Pollut. 147: 430–437, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Butler W.L., Kitajima M.: Fluorescence quenching in photosystem II of chloroplasts.–Biochim. Biophys. Acta 376: 116–125, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell.–Ann. Bot.-London 103: 551–560, 2009.

    Article  CAS  Google Scholar 

  • Chen S., Yang J., Zhang M. et al.: Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P.–Environ. Exp. Bot. 122: 126–140, 2016.

    Article  CAS  Google Scholar 

  • Clijsters H., Cuypers A., Vangronsveld J.: Physiological responses to heavy metals in higher plants; Defence against oxidative stress.–Z. Naturforsch. 54c: 720–734, 1999.

    Google Scholar 

  • D’Agostino I.B., Kieber J.J.: Molecular mechanisms of cytokinin action.–Curr. Opin. Plant Biol. 2: 359–364, 1999.

    Article  PubMed  Google Scholar 

  • Demmig-Adams B., Adams W.W., Heber U. et al.: Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts.–Plant Physiol. 92: 293–301, 1990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dinis L.-T., Ferreira H., Pinto G. et al.: Kaolin-based, foliar reflective film protects photosystem II structure and function in grapevine leaves exposed to heat and high solar radiation.–Photosynthetica 54: 47–55, 2016.

    Article  CAS  Google Scholar 

  • Duarte B., Pedro S., Marques J.C. et al.: Zostera noltii development probing using chlorophyll a transient analysis (JIP-test) under field conditions: Integrating physiological insights into a photochemical stress index.–Ecol. Indic. 76: 219–229, 2017.

    Article  CAS  Google Scholar 

  • Edwards G.E., Baker N.R.: Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?–Photosynth. Res. 37: 89–102, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N., Gehan M.A., Baxter I.: Lights, camera, action: highthroughput plant phenotyping is ready for a close up.–Curr. Opin. Plant Biol. 24: 93–99, 2015.

    Article  PubMed  Google Scholar 

  • Fan J., Hu Z., Xie Y. et al.: Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass.–Front. Plant Sci. 6: 925, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feller U., Crafts-Brandner S.J., Salvucci M.E.: Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) activase-mediated activation of Rubisco.–Plant Physiol. 116: 539–546, 1998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrante A., Maggiore T.: Chlorophyll a fluorescence measurements to evaluate storage time and temperature of Valeriana leafy vegetables.–Postharvest Biol. Tec. 45: 73–80, 2007.

    Article  CAS  Google Scholar 

  • Ferreira N.G.C., Cardoso D.N., Morgado R. et al.: Long-term exposure of the isopod Porcellionides pruinosus to nickel: costs in the energy budget and detoxification enzymes.–Chemosphere 135: 354–362, 2015b.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira N.G.C., Morgado R., Santos M.J.G. et al.: Biomarkers and energy reserves in the isopod Porcellionides pruinosus: The effects of long-term exposure to dimethoate.–Sci. Total Environ. 502: 91–102, 2015a.

    Article  PubMed  CAS  Google Scholar 

  • Flexas J., Bota J., Loreto F. et al.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants.–Plant Biol. 6: 269–279, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Frolec J., Řebiček J., Lazár D. et al.: Impact of two different types of heat stress on chloroplast movement and fluorescence signal of tobacco leaves.–Plant Cell Rep. 29: 705–714, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Genty B., Briantais J.-M., Da Silva J.B.V.: Effect of drought on primary photosynthetic processes of cotton leaves.–Plant Physiol. 83: 360–364, 1987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation.–Biochim. Biophys. Acta 1817: 1490–1498, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Amesz J., Fork D.C. (ed.): Light Emission by Plants and Bacteria. Pp. 660. Academic Press, Orlando 1986.

    Google Scholar 

  • Govindjee, Papageorgiou G.C.: Chlorophyll fluorescence and photosynthesis: fluorescence transients.–In: Giese A.C. (ed.): Photophysiology, Vol. 6. Pp. 1–46. Academic Press, New York 1971.

    Google Scholar 

  • Govindjee, Shevela D., Björn L.-O.: Evolution of the Z-scheme of photosynthesis: a perspective.–Photosynth. Res. 133: 5–15, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Govindjee: Chlorophyll a fluorescence: a bit of basics and history.–In: Papageorgiou G.C., {ieGovindjee (ed.): Chlorophyll a fluorescence: A signature of Photosynthesis, Advances in Photosynthesis and Respiration. Vol. 19. Pp. 1–41. Springer, Dordrecht 2004.

    Google Scholar 

  • Govindjee: Sixty-three years since Kautsky: chlorophyll a fluorescence.–Aust. J. Plant Physiol. 22: 131–160, 1995.

    Article  CAS  Google Scholar 

  • Gravano E., Bussotti F., Strasser R.J. et al.: Ozone symptoms in leaves of woody plants in open-top chambers: ultrastructural and physiological characteristics.–Physiol. Plantarum 121: 620–633, 2004.

    Article  CAS  Google Scholar 

  • Greenbaum N.L., Ley A.C., Mauzerall D.C.: Use of a lightinduced respiratory transient to measure the optical cross section of photosystem I in Chlorella.–Plant Physiol. 84: 879–882, 1987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guanter L., Zhang Y., Jung M. et al.: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence.–Proc. Natl. Acad. Sci. USA 111: E1327–E1333, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Guissé B., Srivastava A., Strasser R.J.: The polyphasic rise of the chlorophyll a fluorescence (O–K–J–I–P) in heat stressed leaves.–Arch. Sci. Genève 48: 147–160, 1995.

    Google Scholar 

  • Hakala M., Tuominen I., Keränen M.: Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II.–Biochim. Biophys. Acta 1706: 68–80, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hamdani S., Qu M., Xin C.-P. et al.: Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction.–J. Plant Physiol. 177: 128–138, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa P.M., Bressan R.A., Zhu J. et al.: Plant cellular and molecular responses to high salinity.–Annu. Rev. Plant Phys. 51: 463–499, 2000.

    Article  CAS  Google Scholar 

  • Hendrickson L., Förster B., Pogson B.J. et al: A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of photosystem II.–Photosynth. Res. 84: 43–49, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hermans C., Smeyers M., Rodriguez R.M. et al.: Quality assessment of urban trees: A comparative study of physiological characterisation, airborne imaging and on site fluorescence monitoring by the OJIP-test.–J. Plant Physiol. 160: 81–90, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hoagland D.R., Arnon D.I.: The water-culture method for growing plants without soil.–In: Agricultural Experiment Station, Circular 347. Pp. 1–39. College of Agriculture, University of California, Berkeley 1938.

    Google Scholar 

  • Humplík J.F., Lazár L., Husičková A. et al.: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses–a review.–Plant Methods 11: 29, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jedmowski C., Ashoub A., Momtaz O. et al.: Impact of drought, heat, and their combination on chlorophyll fluorescence and yield of wild barley (Hordeum spontaneum).–J. Bot. 2015: 120868, 2015.

    Google Scholar 

  • Jedmowski C., Bayramov S., Brüggemann W.: Comparative analysis of drought stress effects on photosynthesis of Eurasian and North African genotypes of wild barley.–Photosynthetica 52: 564–573, 2014.

    Article  CAS  Google Scholar 

  • Jedmowski C., Brüggemann W.: Imaging of fast chlorophyll fluorescence induction curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress.–J. Photoch. Photobio. B 151: 153–160, 2015.

    Article  CAS  Google Scholar 

  • Jiang C.-D., Shi L., Gao H.-Y. et al.: Development of photosystems 2 and 1 during leaf growth in grapevine seedlings probed by leaf chlorophyll a fluorescence transient and 820 nm transmission in vivo.–Photosynthetica 44: 454–463, 2006.

    Article  CAS  Google Scholar 

  • Jiang H.-X., Chen L.-S., Zheng J.-G. et al.: Aluminum-induced effects on Photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient.–Tree Physiol. 28: 1863–1871, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Jiang H.-X., Tang N., Zheng J.-G. et al.: Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/ oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings.–BMC Plant Biol. 9: 102, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joshi M.K., Mohanty P.: Chlorophyll a fluorescence as a probe of heavy metal ion toxicity in plants.–In: Papageorgiou G.C., {ieGovindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Pp. 637–661. Springer, Dordrecht 2004.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Carpentier R., Allakhverdiev S.I. et al.: Fluorescence parameters as early indicators of light stress in barley.–J. Photoch. Photobio. B 112: 1–6, 2012.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions.–Acta Physiol. Plant. 38: 102, 2016.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Oukarroum A., Alexandrov V. et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements.–Plant Physiol. Biochem. 81: 16–25, 2014b.

    Article  PubMed  CAS  Google Scholar 

  • Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel.–Photosynth. Res. 132: 13–66, 2017a.

    Article  PubMed  CAS  Google Scholar 

  • Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about chlorophyll fluorescence: practical issues.–Photosynth. Res. 122: 121–158, 2014a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalaji M.H., Goltsev V.N., Żuk-Gołaszewska K. et al.: Chlorophyll Fluorescence: Understanding Crop Performance–Basics and Applications. Pp. 222. CRC Press, Boca Raton 2017b.

    Book  Google Scholar 

  • Kale R., Hebert A.E., Frankel L.K. et al.: Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II.–Proc. Natl. Acad. Sci. USA 114: 2988–2993, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Kaňa R., Govindjee: Role of ions in the regulation of light harvesting.–Front. Plant Sci. 7: 1849, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouřil R., Lazár D, Lee H. et al.: Moderately elevated temperature eliminates resistance of rice plants with enhanced expression of glutathione reductase to intensive photooxidative stress.–Photosynthetica 41: 571–578, 2003.

    Article  Google Scholar 

  • Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics.–Annu. Rev. Plant Phys. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Kromdijk J., Głowacka K., Leonelli L. et al.: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection.–Science 354: 857–861, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Lazár D., Ilík P., Nauš J.: An appearance of K-peak in fluorescence induction depends on the acclimation of barley leaves to higher temperatures.–J. Lumin. 72-74: 595–596, 1997.

    Article  Google Scholar 

  • Lazár D., Ilík P.: High-temperature induced chlorophyll fluorescence changes in barley leaves. Comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve.–Plant Sci. 124: 159–164, 1997.

    Article  Google Scholar 

  • Lazár D., Nauš J.: Statistical properties of chlorophyll fluorescence induction parameters.–Photosynthetica 35: 121–127, 1998.

    Article  Google Scholar 

  • Lazár D., Pospíšil P., Nauš J.: Decrease of fluorescence intensity after the K step in chlorophyll a fluorescence induction is suppressed by electron acceptors and donors to photosystem 2.–Photosynthetica 37: 255–265, 1999.

    Article  Google Scholar 

  • Lazár D., Schansker G.: Models of chlorophyll a fluorescence transients.–In: Laisk A., Nedbal A.L., Govindjee (ed.): Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems. Advances in Photosynthesis and Respiration. Vol. 29. Pp. 85–123. Springer,Dordrecht

    Google Scholar 

  • Lazár D.: Chlorophyll a fluorescence induction.–Biochim. Biophys. Acta 1412: 1–28, 1999.

    Article  PubMed  Google Scholar 

  • Lazár D.: Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity.–J. Theor. Biol. 220: 469–503, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lazár D.: Modelling of light-induced chlorophyll a fluorescence rise (O–J–I–P transient) and changes in 820 nm-transmittance signal of photosynthesis.–Photosynthetica 47: 483–498, 2009.

    Article  CAS  Google Scholar 

  • Lazár D.: Parameters of photosynthetic energy partitioning.–J. Plant Physiol. 175: 131–147, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Lazár D.: Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise.–J. Theor. Biol. 335: 249–264, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light.–Funct. Plant Biol. 33: 9–30, 2006.

    Article  Google Scholar 

  • Ley A.C., Mauzerall D.C.: Absolute absorption cross-sections for photosystem II and the minimum quantum requirement of photosynthesis in Chlorella vulgaris.–Biochim. Biophys. Acta 680: 95–106, 1982.

    Article  CAS  Google Scholar 

  • Liang Y., Chen H., Tang M.J. et al.: Responses of Jatropha curcas seedlings to cold stress: photosynthesis-related proteins and chlorophyll fluorescence characteristics.–Physiol. Plantarum 131: 508–517, 2007.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K., Buschmann C., Rinderle U. et al.: Application of chlorophyll fluorescence in ecophysiology.–Radiat. Environ. Biophys. 25: 297–308, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Liu Q.D., Zhu Y.R., Tao H.L. et al.: Damage of PSII during senescence of Spirodela polyrrhiza explants under long-day conditions and its prevention by 6-benzyladenine.–J. Plant Res. 119: 145–152, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Makino A.: Rubisco and nitrogen relationships in rice: Leaf photosynthesis and plant growth.–Soil Sci. Plant Nutr. 49: 317–327, 2003.

    Article  Google Scholar 

  • Marschner H.: Mineral Nutrition of Higher Plants, 2nd ed. Academic Press, London 1995.

    Google Scholar 

  • Mathur S., Jajoo A., Mehta P. et al.: Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum).–Plant Biol. 13: 1–6, 2011.

    Article  PubMed  CAS  Google Scholar 

  • McGrath J.M., Beztelberger A.M., Wang S. et al.: An analysis of ozone damage to historical maize and soybean yields in the United States.–Proc. Natl. Acad. Sci. USA 112: 14390–14395, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Mehta P., Jajoo A., Mathur S. et al.: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves.–Plant Physiol. Biochem. 48: 16–20, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Meroni M., Rossini M., Guanter L. et al.: Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications.–Remote Sens. Environ. 113: 2037–2051, 2009.

    Article  Google Scholar 

  • Mishra K.B., Mishra A., Klem K. et al.: Plant phenotyping: a perspective.–Ind. J. Plant Physiol. 21: 514–527, 2016a.

    Article  Google Scholar 

  • Mishra K.B., Mishra A., Novotná K. et al.: Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions.–Plant Methods 12: 46, 2016b.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Misra A.N. Srivastava A., Strasser R.J.: Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings.–J. Plant Physiol. 158: 1173–1181, 2001.

    Article  CAS  Google Scholar 

  • Morales F., Abadía A., Abadía J.: Photoinhibition and photoprotection under nutrient deficiencies, drought and salinity.–In: Demmig-Adams B., Adams III W.W., Mattoo A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation, and Environment. Pp. 65–85. Springer Science+Business Media B.V. Dordrecht 2008.

    Google Scholar 

  • Moya I., Cerovic Z.G.: Remote sensing of chlorophyll fluorescence: instrumentation and analysis.–In: Papageorgiou G.C., {ieGovidjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 429–445. Springer, Dordrecht 2004.

    Chapter  Google Scholar 

  • Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy.–Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munday J.C. Jr., Govindjee: Light-induced changes in the fluorescence yield of chlorophyll a in vivo. III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa.–Biophys. J. 9: 1–21, 1969a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munday J.C. Jr., Govindjee: Light-induced changes in the fluorescence yield of chlorophyll a in vivo. IV. The effect of preillumination on the fluorescence transient of Chlorella pyrenoidosa.–Biophys. J. 9: 22–35, 1969b.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munns R., Tester M.: Mechanisms of salinity tolerance.–Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Murata N., Takahashi S., Nishiyama Y. et al.: Photoinhibition of photosystem II under environmental stress.–Biochim. Biophys. Acta 1767: 414–421, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.–J. Exp. Bot. 64: 3983–3998, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Nagajyoti P.C., Lee K.D., Sreekanth T.V.M.: Heavy metals, occurrence and toxicity for plants: a review.–Environ. Chem. Lett. 8: 199–216, 2010.

    Article  CAS  Google Scholar 

  • Nash D., Miyao M., Murata N.: Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese.–Biochim. Biophys. Acta 807: 127–133, 1985.

    Article  CAS  Google Scholar 

  • Nauš J., Kuropatwa R., Klinkovský T. et al.: Heat injury of barley leaves detected by the chlorophyll fluorescence temperature curve.–Biochim. Biophys. Acta 1101: 359–362, 1992.

    Article  Google Scholar 

  • Nernst W.H.: [Kinetics of solids: theory of difussion.]–Z. Phys. Chem. 3: 613–637, 1888. [In German]

    Google Scholar 

  • Niinemets U.: A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance.–Ecol. Res. 25: 693–714, 2010.

    Article  Google Scholar 

  • Nikiforou C., Manetas Y.: Inherent nitrogen deficiency in Pistacia lentiscus preferentially affects photosystem I: a seasonal field study.–Funct. Plant Biol. 38: 848–855, 2011.

    Article  CAS  Google Scholar 

  • Nilkens M., Kress E., Lambrev P. et al.: Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis.–Biochim. Biophys. Acta 1797: 466–475, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Oukarroum A., El Madidi S., Schansker G. et al.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering.–Environ. Exp. Bot. 60: 438–446, 2007.

    Article  CAS  Google Scholar 

  • Oukarroum A., El Madidi S., Strasser R.J.: Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP.–Plant Physiol. Biochem. 105: 102–108, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Oukarroum A., Strasser R.J., van Staden J.: Phenotyping of dark and light adapted barley plants by the fast chlorophyll a fluorescence rise OJIP.–S. Afr. J. Bot. 70: 277–283, 2004.

    Article  CAS  Google Scholar 

  • Pan X., Chen X., Zhang D. et al.: Effect of Chromium(VI) on photosystem II activity and heterogeneity of Synechocystis sp. (Cyanophyta): studied with in vivo chlorophyll fluorescence tests.–J. Phycol. 45: 386–394, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Paoletti E., Bussotti F., Della Rocca G. et al.: Fluorescence transient in ozonated Mediterranean shrubs.–Phyton 44: 121–131, 2004.

    Google Scholar 

  • Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Vol. 19. Pp. 820. Springer, Dordrecht 2004.

    Google Scholar 

  • Papageorgiou G.C., Govindjee: Photosystem II fluorescence: slow changes - scaling from the past.–J. Photochem. Photobiol. B. 104: 258–270, 2011

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K.: The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint.–Photosynth. Res. 94: 275–290, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Pareek A., Sopory S.K., Bohnert H.K. et al. (ed.): Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation. Pp. 526, Springer, Dordrecht 2010.

    Google Scholar 

  • Parida A.K., Das A.B.: Salt tolerance and salinity effects on plants: A review.–Ecotoxicol. Environ. Safe. 60: 324–349, 2005.

    Article  CAS  Google Scholar 

  • Prakash J.S.S., Srivastava A., Strasser R.J. et al.: Senescence induced alterations in the photosystem II functions of Cucumis sativus cotyledons: probing of senescence driven alterations of photosystem II by chlorophyll a fluorescence induction O-J-IP transients.–Indian J. Biochem. Biophys. 40: 160–168, 2003.

    PubMed  CAS  Google Scholar 

  • Rapacz M., Sasal M., Kalaji H.M. et al.: Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments?–PLoS ONE 10: e0134820, 2015b.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rapacz M., Sasal M., Wójcik-Jagła M.: Direct and indirect measurements of freezing tolerance: advantages and limitations.–Acta Physiol. Plant. 37: 157–173, 2015a.

    Article  CAS  Google Scholar 

  • Rapacz M., Woźniczka A.: A selection tool for freezing tolerance in common wheat using the fast chlorophyll a fluorescence transient.–Plant Breeding 128: 227–234, 2009.

    Article  Google Scholar 

  • Rapacz M.: Chlorophyll a fluorescence transient during freezing and recovery in winter wheat.–Photosynthetica 45: 409–418, 2007.

    Article  CAS  Google Scholar 

  • Schansker G., Tóth S.Z., Holzwarth A.R. et al.: Chlorophyll a fluorescence: beyond the limits of the QA-model.–Photosynth. Res. 120: 43–58, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Schansker G., Tóth S.Z., Kovács L. et al.: Evidence for a fluorescence yield change driven by a light induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise.–Biochim. Biophys. Acta 1807: 1032–1043, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U., Berry J.A.: Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of photosynthetic apparatus.–Planta 136: 233–238, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Serbin S.P., Dillaway D.N., Kruger.E.L. et al.: Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature.–J. Exp. Bot. 63: 489–502, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Shabnam N., Sharmila P., Govindjee et al.: Differential response of floating and submerged leaves of long leaf pondweed to silver ions.–Front. Plant Sci. 8: 1052, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Govindjee, Strasser R.J.: Greening of peas: parallel measurements on 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700.–Photosynthetica 37: 365–392, 1999.

    Article  CAS  Google Scholar 

  • Srivastava A., Guissé B., Greppin H. et al.: Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient OKJIP.–Biochim. Biophys. Acta 1320: 95–106, 1997.

    Article  CAS  Google Scholar 

  • Stauffer P.H.: Flux flummoxed: A proposal for consistent usage.–Ground Water 44: 125–128, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Stefanov D., Petkova V., Denev I.D.: Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using JIP-test.–Sci. Hortic.-Amsterdam 128: 1–6, 2011.

    Article  Google Scholar 

  • Stirbet A., Govindjee, Strasser B.J. et al.: Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation.–J. Theor. Biol. 193: 131–151, 1998.

    Article  CAS  Google Scholar 

  • Stirbet A., Govindjee: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise.–Photosynth. Res. 113: 15–61, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basis and applications of the OJIP fluorescence transient.–J. Photochem. Photobiol. B 104: 236–257, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Stirbet A., Riznichenko G.Yu., Rubin A.B. et al.: Modeling chlorophyll a fluorescence transient: relation to photosynthesis.–Biochemistry-Moscow 79: 291–323, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Strasser B.J, Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP test.–In: Mathis P. (ed.): Photosynthesis: from Light to Biosphere. Vol. 5. Pp. 977–980. Kluwer Academic Publishers, Dordrecht 1995.

    CAS  Google Scholar 

  • Strasser B.J.: Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients.–Photosynth. Res. 52: 147–155, 1997.

    Article  CAS  Google Scholar 

  • Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.–Photochem. Photobiol. 61: 32–42, 1995.

    Article  CAS  Google Scholar 

  • Strasser R.J., Srivastava A., Tsimilli-Michael M.: Screening the vitality and photosynthetic activity of plants by fluorescence transient.–In: Behl R.K., Punia M.S., Lather B.P.S. (ed.): Crop Improvement for Food Security. Pp. 72–115. SSARM, Hisar, India 1999.

    Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Dangre D. et al.: Biophysical phenomics reveals functional building blocks of plants systems biology: a case study for the evaluation of the impact of mycorrhization with Piriformospora indica.–In: Varma A., Oelmüler R. (ed.): Advanced Techniques in Soil Microbiology. Soil Biology. Pp. 319–341. Springer, Berlin 2007.

    Chapter  Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient.–In: Papageorgiou G.C., {ieGovindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol. 19. Pp. 321–362. Springer, Dordrecht 2004.

    Chapter  Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Srivastava A.: The fluorescence transient as a tool to characterize and screen photosynthetic samples.–In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 443–480. Taylor & Francis, London 2000.

    Google Scholar 

  • Strasser R.J.: The grouping model of plant photosynthesis.–In: Akoyunoglou G., Argyroudi-Akoyunoglou J.H. (ed.): Chloroplast Development. Pp. 513–538. Elsevier Biomedical, Amsterdam 1978.

    Google Scholar 

  • Strauss A.J., Krüger G.H.J., Strasser R.J. et al.: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P.–Environ. Exp. Bot. 56: 147–157, 2006.

    Article  CAS  Google Scholar 

  • Sudhir P., Murthy S.D.S.: Effects of salt stress on basic processes of photosynthesis.–Photosynthetica 42: 481–486, 2004.

    Article  CAS  Google Scholar 

  • Toepel J., Gilbert M., Wilhelm C.: Can chlorophyll a in-vivo fluorescence be used for quantification of carbon-based primary production in absolute terms?–Arch. Hydrobiol. 160: 515–526, 2004.

    Article  CAS  Google Scholar 

  • Tsimilli-Michael M., Eggenberg P., Biro B. et al.: Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P.–Appl. Soil Ecol. 15: 169–182, 2000.

    Article  Google Scholar 

  • Tsimilli-Michael M., Pêcheux M., Strasser R.J.: Vitality and stress adaptation of the symbionts of coral reef and temperate foraminifers probed in hospite by the fluorescence kinetics OJ-I-P.–Arch. Sci. Genève 51: 1–36, 1998.

    Google Scholar 

  • Tsimilli-Michael M., Strasser R.J.: In vivo assessment of plants’ vitality: applications in detecting and evaluating the impact of mycorrhization on host plants.–In: Varma A. (ed.): Mycorrhiza: State of the Art. Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, 3rd ed. Pp. 679–703. Springer, Dordrecht 2008.

    Chapter  Google Scholar 

  • van Heerden P.D.R., Strasser R.J., Krüger G.H.J.: Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics.–Physiol. Plantarum 121: 239–249, 2004b.

    Article  Google Scholar 

  • van Heerden P.D.R., Tsimilli-Michael M., Krüger G.H.J. et al.: Dark chilling effects on soybean genotypes during vegetative development: Parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation.–Physiol. Plantarum 117: 476–491, 2003.

    Article  Google Scholar 

  • van Heerden P.D.R., Viljoen M.M., DeVilliers M. et al.: Limitation of photosynthetic carbon metabolism by dark chilling in temperate and tropical soybean genotypes.–Plant Physiol. Biochem. 42: 117–124, 2004a.

    Article  PubMed  CAS  Google Scholar 

  • van Straten G., van Thoor B., van Willegenburg L.G. et al: A ‘big leaf, big fruit, big substrate’ model for experiments on receding horizon optimal control of nutrient supply to greenhouse tomato.–Acta Hortic. 718: 147–155, 2006.

    Article  Google Scholar 

  • Volgusheva A., Yakovleva O.V., Kukarskikh G.P. et al.: Performance index in assessing the physiological state of trees in urban ecosystems.–Biophysics 56: 90–95, 2011.

    Article  Google Scholar 

  • Wang X.Y., Xu X.M., Cui J.: The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light.–Photosynthetica 53: 213–222, 2015.

    Article  CAS  Google Scholar 

  • Wong D., Govindjee: Effects of lead ions on photosystem I in isolated chloroplasts: Studies on the reaction center P700.–Photosynthetica 10: 241–254, 1976.

    CAS  Google Scholar 

  • Yan K., Chen P., Shao H. et al.: Responses of photosynthesis and photosystem II to higher temperature and salt stress in sorghum.–J. Agron. Crop Sci. 198: 218–226, 2012.

    Article  CAS  Google Scholar 

  • Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll fluorescence measurements.–Biochim. Biophys. Acta 1797: 1428–1438, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Yusuf M.A., Sarin N.B.: Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content.–Transgenic Res. 16: 109–113, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X.-G., Govindjee, Baker N.R. et al.: Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II.–Planta 223: 114–133, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Zubek S., Stojakowska A., Anielska T. et al.: Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L.–Mycorrhiza 20: 497–504, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Živčák M., Olšovská K., Slamka P. et al.: Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat.–Zemdirbyste-Agriculture 101: 437–443, 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Stirbet or D. Lazár.

Additional information

Three of the authors (Alexandrina Stirbet, Dušan Lazár and Johannes Kromdijk) pay tribute to their coauthor (Govindjee) for his lifetime work, at his 85thbirthday (on October 24, 2017). They write: “Besides his many achievements, Govindjee is well known in the photosynthesis research community for his passion and excitement in relating chlorophyll (Chl) a fluorescence to photosynthesis; this started with his discovery, in 1960, of the two-light effect on Chl a fluorescence, and it continues till today.” Stirbet wrote: “I met Govindjee in 1995 in Geneva, Switzerland, when he was visiting Reto Strasser’s lab, and we wrote a paper on modeling the Chl a fluorescence transient, the OJIP phase (Stirbet et al. 1998). In 2010, we restarted our collaboration, and published several reviews, as well as experimental and theoretical papers, still on Chl fluorescence, and I am looking forward to continue our work together”. Lazár added: “My first contact with Govindjee dates back to the final stages of my Ph.D. studies, when I submitted a review paper to Biochimica et Biophysica Acta on Chl fluorescence induction (Lazár 1999), and Govindjee was one of its reviewers; he had declared his identity. From that time, I know Govindjee as a bright, accurate and enthusiastic scientist, who also supports (and encourages) alternate views [see e.g., my theoretical paper (Lazár 2013) on variable Chl fluorescence originating in PSI, which he had also reviewed].” Kromdijk added: “Doing photosynthesis-related research on the Urbana-Champaign Campus of the University of Illinois (USA), it is impossible not to cross paths with Govindjee. I met Govindjee a few years ago after relocating to Urbana-Champaign for my postdoctoral research. Since then, we regularly meet up to drink coffee and talk about life and anything related to photosynthesis. Govindjee has an incredible lifetime of photosynthetic research and experiences to share, and combines this with the passion and enthusiasm of someone who just discovered the topic yesterday.”

Acknowledgement: D.L. was supported by a grant # LO1204 (Sustainable Development of Research in the Centre of the Region Haná) from the National Program of Sustainability I, Ministry of Education, Youth and Sports, Czech Republic. J.K. was supported by the Bill and Melinda Gates Foundation (grant OPP1060461). Govindjee was supported by the Department of Plant Biology (James Dalling, Head), and the Department of Biochemistry (Susan Martinis, Head) of the University of Illinois at Urbana-Champaign, IL, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stirbet, A., Lazár, D., Kromdijk, J. et al. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses?. Photosynthetica 56, 86–104 (2018). https://doi.org/10.1007/s11099-018-0770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0770-3

Additional key words

Navigation