Skip to main content
Log in

Photosynthesis, antioxidant status and gas-exchange are altered by glyphosate application in peanut leaves

  • Original papers
  • Published:
Photosynthetica

Abstract

Glyphosate herbicide caused oxidative stress and exhibited negative effects on photosynthesis and gas exchange of peanut [Arachis hypogaea L. cv. Giza (G) 5 and 6] leaves. We demonstrated that glyphosate caused various morphological symptoms, such as chlorosis, yellowing, and appearance of curly edges in leaves treated with high doses of herbicide in both cultivars; however, the G5 cultivar was more sensitive and showed severer symptoms. Glyphosate lowered photosynthesis and reduced contents of pigments and proteins as well as free amino acids in both cultivars. The gas-exchange parameters, such as photosynthetic (P N) and transpiration rate (E), were highly altered by the glyphosate application. For example, P N and E were reduced by 65 and 61%, respectively, in G5 treated with high dose of glyphosate compared with control. Antioxidant enzymes, such as peroxidase, catalase, ascorbate peroxidase, and superoxide dismutase were induced by both low and high concentrations in the glyphosate-treated leaves. Moreover, the level of lipid peroxidation, indicated by a malondialdehyde content, as well as the hydrogen peroxide content increased in the glyphosate-treated leaves. However, an increase in total antioxidant activity was detected in leaves and this reflected changes in the antioxidant status and accumulation of antioxidants as a defense mechanism against glyphosate toxicity in peanut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

C i :

intercellular CO2 concentration

CAT:

catalase

DPPH:

1,1-diphenyl-2-picrylhydrazyl

E :

transpiration rate

EPSPS:

5-enolpyruvylshikimate-3-phosphate synthase

g s :

stomatal conductance

MDA:

malondialdehyde

P N :

photosynthetic rate

POD:

peroxidase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TAA:

total antioxidant activity

References

  • Ahsan N., Lee D.G., Lee K.W. et al.: Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. — Plant Physiol. Biochem. 46: 1062–1070, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Alscher R.G., Donahue J.L., Cramer C.L.: Reactive oxygen species and antioxidants: relationships in green cells. — Physiol. Plantarum 100: 224–233, 1997.

    Article  CAS  Google Scholar 

  • Anjum N.A., Umar S., Ahmad A. et al.: Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. — Plant Growth Regul. 54: 271–279, 2008.

    Article  CAS  Google Scholar 

  • Asada K.: Production and action of active oxygen species in photosynthetic tissues. — In: Foyer C., Mullineaux P. (ed.): Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. Pp. 77–104. CRC Press, London 1994.

    Google Scholar 

  • Aydin C.: Some engineering properties of peanut and kernel. — J. Food Eng. 79: 810–816, 2007.

    Article  Google Scholar 

  • Beauchamp C., Fridovich I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.

    Article  CAS  PubMed  Google Scholar 

  • Cerdeira A.L., Duke S.O.: The current status and environmental impacts of glyphosate-resistant crops: A review. — J. Environ. Qual. 35: 1633–1658, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Chandlee J., Scandalios J.: Analysis of variants affecting the catalase developmental program in maize scutellum. — Theor. Appl. Genet. 69: 71–77, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Cho U.H., Seo N.H.: Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. — Plant Sci. 168: 113–120, 2005.

    Article  CAS  Google Scholar 

  • Cobb A., Reade J.: Herbicides and Plant Physiology. Pp. 98–99. Wiley-Blackwell, Hoboken 2010.

    Book  Google Scholar 

  • Dalla Vecchia F., Barbato R., La Rocca N. et al.: Responses to bleaching herbicides by leaf chloroplasts of maize plants grown at different temperatures. — J. Exp. Bot. 52: 811–820, 2001.

    CAS  PubMed  Google Scholar 

  • de María N., de Felipe M.R., Fernández-Pascual M.: Alterations induced by glyphosate on lupin photosynthetic apparatus and nodule ultrastructure and some oxygen diffusion related proteins. — Plant Physiol. Bioch. 43: 985–996, 2005.

    Article  Google Scholar 

  • De Prado J.L., De Prado R.A., Shimabukuro R.H.: The effect of diclofop on membrane potential, ethylene induction, and herbicide phytotoxicity in resistant and susceptible biotypes of grasses. — Pestic. Biochem. Phys. 63: 1–14, 1999.

    Article  CAS  Google Scholar 

  • Duke S.O., Baerson S.R., Rimando A.M.: Glyphosate. — In: Plimmer J.R. (ed.): Encyclopedia of Agrochemicals. Pp. 1638. Wiley Online Lib., New York 2003.

    Google Scholar 

  • Duke S.O., Powles S.B.: Glyphosate: a once-in-a-century herbicide. — Pest Manag. Sci. 64: 319–325, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Duncan D.B.: A Significance Test for Differences between Ranked Treatments in an Analysis of Variance. — Virginia J. Sci 2: 171–189, 1951).

    Google Scholar 

  • Fecht-Christoffers M.M., Braun H.-P., Lemaitre-Guillier C. et al.: Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. — Plant Physiol. 133: 1935–1946, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedtke C., Duke S.: Herbicides. — In: Hock B., Elstner F. (ed.): Plant Toxicology. Pp. 247–330. Marcel Dekker, New York 2005.

    Google Scholar 

  • Foyer C.H., Harbinson J., Mullineaux P.: Oxygen metabolism and the regulation of photosynthetic electron transport. — In: Foyer C.H., Moulineaux P.M. (ed.) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. Pp. 1–42. CRC Press, Boca Raton 1994.

    Google Scholar 

  • Franz J.E., Mao M.K., Sikorski J.A.: Glyphosate: a Unique Global Herbicide. Pp. 189. American Chemical Society, Washington DC 1997).

    Google Scholar 

  • Geiger D.R., Kapitan S.W., Tucci M.A.: Glyphosate inhibits photosynthesis and allocation of carbon to starch in sugar beet leaves. — Plant Physiol. 82: 468–472, 1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger D.R., Tucci M.A., Serviates J.C.: Glyphosate effects on carbon assimilation and gas exchange in sugar beet leaves. — Plant Physiol. 85: 365–369, 1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes M.P., Smedbol E., Chalifour A. et al.: Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. — J. Exp. Bot. 65: 4691–4703, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Harfouche R., Basu S., Soni S. et al.: Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. — Angiogenesis 12: 325–338, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Hoppe H.H.: Fatty acid biosynthesis — A target site of herbicide action. — In: Böger P., Sandmann G. (ed.): Target Sites of Herbicide Action. Pp. 65–83. CRC Press, Boca Raton 1989.

    Google Scholar 

  • Jana S., Choudhuri M.A.: Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. — Aquat. Bot. 11: 67–77, 1981.

    Article  CAS  Google Scholar 

  • Jiang L., Yang H.: Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. — Ecotoxicol. Environ. Safe. 72: 1687–1693, 2009.

    Article  CAS  Google Scholar 

  • Kellogg E.W., Fridovich I.: Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. — J. Biol. Chem. 250: 8812–8817, 1975.

    CAS  PubMed  Google Scholar 

  • Kielak E., Sempruch C., Mioduszewska H. et al.: Phytotoxicity of Roundup Ultra 360 SL in aquatic ecosystems: Biochemical evaluation with duckweed (Lemna minor L.) as a model plant. — Pestic. Biochem. Phys. 99: 237–243, 2011.

    Article  CAS  Google Scholar 

  • King C.A., Purcell L.C., Vories E.D.: Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate applications. — Agron. J. 93: 179–186, 2001.

    Article  CAS  Google Scholar 

  • Lai C.S., Piette L.H.: Hydroxyl radical production involved in lipid peroxidation of rat liver microsomes. — Biochem. Bioph. Res. Co. 78: 51–59, 1977.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K., Buschmann C.: Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. — In: Lichtenthaler K. (ed.): Current Protocols in Food Analytical Chemistry. Wiley, New York 2001.

    Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J.: Protein measurement with the Folin phenol reagent. — J. Biol. Chem. 193: 265–275, 1951.

    CAS  PubMed  Google Scholar 

  • MacAdam J.W., Nelson C.J., Sharp R.E.: Peroxidase activity in the leaf elongation zone of tall fescue I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. — Plant Physiol. 99: 872–878, 1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos-Naranjo E., Redondo-Gómez S., Cox L. et al.: Effectiveness of glyphosate and imazamox on the control of the invasive cordgrass Spartina densiflora. — Ecotoxicol. Environ. Safe. 72: 1694–1700, 2009.

    Article  CAS  Google Scholar 

  • Miteva L.-E., Ivanov S., Alexieva V.: Alterations in glutathione pool and some related enzymes in leaves and roots of pea plants treated with the herbicide glyphosate. — Russ. J. Plant Physl+ 57: 131–136, 2010.

    Article  CAS  Google Scholar 

  • Moore S., Stein W.H.: Photometric ninhydrin method for use in the chromatography of amino acids. — J. Biol. Chem. 176: 367–388, 1948.

    CAS  PubMed  Google Scholar 

  • Naik G., Priyadarsini K., Satav J. et al.: Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. — Phytochemistry 63: 97–104, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Olesen C.F., Cedergreen N.: Glyphosate uncouples gas exchange and chlorophyll fluorescence. — Pest Manage. Sci. 66: 536–542, 2010.

    Article  CAS  Google Scholar 

  • Oyinlola A., Ojo A., Adekoya L.: Development of a laboratory model screw press for peanut oil expression. — J. Food Eng. 64: 221–227, 2004.

    Article  Google Scholar 

  • Pline W.A., Wu J., Hatzios K.K.: Effects of temperature and chemical additives on the response of transgenic herbicideresistant soybeans to glufosinate and glyphosate applications. — Pestic. Biochem. Phys. 65: 119–131, 1999.

    Article  CAS  Google Scholar 

  • Racchi M.: Glyphosate tolerance in plant cell cultures. — In: Sangwan R.S., Sangwan-Norreel B.S. (ed.): The Impact of Biotechnology on Agriculture. Pp. 437–446. Kluwer Academic Press, Dordrecht 1990.

    Chapter  Google Scholar 

  • Radwan D.E.M., Soltan D.M.: The negative effects of clethodim in photosynthesis and gas-exchange status of maize plants are ameliorated by salicylic acid pretreatment. — Photosynthetica 50: 171–179, 2012.

    Article  CAS  Google Scholar 

  • Radwan D.E., Lu G., Fayez K.A., Mahmoud S.Y.: Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves. — J. Plant Physiol. 165: 845–857, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Radwan D.E.M.: Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. — Pestic. Biochem. Phys. 102: 182–188, 2012.

    Article  CAS  Google Scholar 

  • Reddy K.N., Hoagland R.E., Zablotowicz R.M.: Effect of glyphosate on growth, chlorophyll, and nodulation in glyphosate-resistant and susceptible soybean (Glycine max) varieties. — J. New Seeds 2: 37–52, 2001.

    Article  Google Scholar 

  • Schönbrunn E., Eschenburg S., Shuttleworth W.A. et al.: Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. — P. Natl. Acad. Sci. USA 98: 1376–1380, 2001.

    Article  Google Scholar 

  • Sergiev I.G., Alexieva V.S., Ivanov S.V. et al.: The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. — Pestic. Biochem. Phys. 85: 139–146, 2006.

    Article  CAS  Google Scholar 

  • Servaites J.C., Tucci M.A., Geiger D.R.: Glyphosate effects on carbon assimilation, ribulose bisphosphate carboxylase activity, and metabolite levels in sugar beet leaves. — Plant Physiol. 85: 370–374, 1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada K., Fujikawa K., Yahara K., Nakamura T.: Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. — J. Agric. Food Chem. 40: 945–948, 1992.

    Article  CAS  Google Scholar 

  • Song N.H., Le Yin X., Chen G.F., Yang H.: Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. — Chemosphere 68: 1779–1787, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Srivalli B., Chinnusamy V., Khanna-Chopra R.: Antioxidant defense in response to abiotic stresses in plants. — J. Plant Biol.-New Delhi 30: 121–140, 2003.

    Google Scholar 

  • Steinrücken H., Amrhein N.: The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. — Biochem. Bioph. Res. Co. 94: 1207–1212, 1980.

    Article  Google Scholar 

  • Tan S., Evans R., Singh B.: Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. — Amino Acids 30: 195–204, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Torstensson L.: Behaviour of glyphosate in soils and its degradation. — In: E. Grossbard, Atkinson D. (ed.): The Herbicide Glyphosate. Pp. 137–150. Butterworths, London 1985.

    Google Scholar 

  • Vencill W.K.: Herbicide Handbook. Pp. 493. Weed Sci. Soc. Amer., Lawrence 2002.

    Google Scholar 

  • Wiseman H., Halliwell B.: Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. — Biochem. J. 313: 17–29, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong P.: Effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll–a synthesis of Scenedesmus quadricauda Berb 614. — Chemosphere 41: 177–182, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Xue Y.J., Tao L., Yang Z.M.: Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. — J. Agric. Food Chem. 56: 9676–9684, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi Y., Furutera A., Seki K. et al.: Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. — Plant Physiol. Bioch. 46: 786–793, 2008.

    Article  CAS  Google Scholar 

  • Yin X.L., Jiang L., Song N.H., Yang H.: Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. — J. Agric. Food Chem. 56: 4825–4831, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Yu J., Ahmedna M., Goktepe I.: Peanut protein concentrate: Production and functional properties as affected by processing. — Food Chem. 103: 121–129, 2007.

    Article  CAS  Google Scholar 

  • Zhang X.: Research Methodology of Crop Physiology. Pp. 208–211. Agri. Press, Beijing 1992.

    Google Scholar 

  • Zobiole L.H.S., Kremer R.J., Constantin J.: Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosate-resistant soybean. — J. Plant Nutr. Soil Sc. 175: 319–330, 2012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. M. Radwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radwan, D.E.M., Fayez, K.A. Photosynthesis, antioxidant status and gas-exchange are altered by glyphosate application in peanut leaves. Photosynthetica 54, 307–316 (2016). https://doi.org/10.1007/s11099-016-0075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0075-3

Additional key words

Navigation