Skip to main content
Log in

Synthesis of Gold NPs-Containing Thin Films from Metal Salt Injection in Ar or Ar–NH3 DBDs

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This study focuses on metal/polymer nanocomposite thin films made by atmospheric pressure Plasma-Enhanced Chemical Vapor Deposition. The aerosol of isopropanol-dissolved tetrachloroauric acid (HAuCl4:3H2O gold salt) is injected in a dielectric barrier discharge to synthesize plasmonic nanocomposite thin films. Argon is used as carrier gas with or without 133 ppm addition of ammonia (NH3) to respectively get or not a Penning mixture. Results show that NH3 largely influences the salt reduction and thin film properties. According to the aerosol characterization, the size distribution at the plasma entrance supports that isopropanol mainly evaporates before injection in the plasma. The salt initially dissolved in each droplet precipitates during evaporation before injection as solid nanoparticles of about 30 nm diameter with eventual traces of solvent. Then, the nanocomposite thins film are studied. Optical properties, as plasmonic resonance, are characterized by UV–visible absorption spectroscopy. The chemical composition is analyzed using X-ray photoelectron spectroscopy and Raman spectroscopy, complemented by X-ray diffraction analysis as well as chemical mapping obtained by Energy dispersive spectroscopy coupled to scanning electron microscopy (SEM) operating in Scanning Transmission Electron Microscopy mode. Additionally, the morphology of the deposits is investigated by atomic force microscopy and SEM, highlighting the influence of NH3 gas on the film nature and therefore its role in the overall deposition process. Finally, optical emission spectroscopy of the plasma gives clue to better understand the effect of NH3. The overall results show that the salt nanoparticles are reduced in the plasma phase leading to non-aggregated metal Au NPs embedded in a carbon-based matrix formed by isopropanol polymerization. The presence of NH3 in the plasma unambiguously decreases the salt reduction and affects the thin film properties, consequently changing their plasmonic response related to the size, concentration, and composition of the embedded NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kogelschatz U, Dielectric-barrier discharges: their history, discharge physics, and industrial applications

  2. Klages C-P, Hopfner K, Klake N, Thyen R (2001) Surface functionalization at atmospheric pressure by DBD-based pulsed plasma polymerization. Plasmas Polym

  3. Sakoda T, Sung Y-M, Matsukuma K (2006) Plasma treatment on electrode surfaces of bifacial silicon solar cells. Sol Energy Mater Sol Cells 90(7–8):1089–1097. https://doi.org/10.1016/j.solmat.2005.06.008

    Article  CAS  Google Scholar 

  4. Lelièvre J et al (2019) Efficient silicon nitride SiNx: H antireflective and passivation layers deposited by atmospheric pressure PECVD for silicon solar cells. Prog Photovolt Res Appl 27(11):1007–1019. https://doi.org/10.1002/pip.3141

    Article  CAS  Google Scholar 

  5. Fanelli F, Fracassi F (2016) Thin film deposition on open-cell foams by atmospheric pressure dielectric barrier discharges. Plasma Processes Polym 13(4):470–479. https://doi.org/10.1002/ppap.201500150

    Article  CAS  Google Scholar 

  6. Starostin SA, Creatore M, Bouwstra JB, van de Sanden MCM, de Vries HW (2015) Towards roll-to-roll deposition of high quality moisture barrier films on polymers by atmospheric pressure plasma assisted process: towards roll-to-roll deposition of high quality moisture barrier films on polymers by atmospheric pressure plasma assisted process. Plasma Process Polym 12(6):545–554. https://doi.org/10.1002/ppap.201400194

    Article  CAS  Google Scholar 

  7. Massines F, Sarra-Bournet C, Fanelli F, Naudé N, Gherardi N (2012) Atmospheric pressure low temperature direct plasma technology: status and challenges for thin film deposition. Plasma Processes Polym 9(11–12):1041–1073. https://doi.org/10.1002/ppap.201200029

    Article  CAS  Google Scholar 

  8. Raizer YP (1991) Gas discharge physics, 2nd éd. Springer, Berlin

  9. Kogelschatz U, Eliasson B, Egli W (1999) From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure Appl Chem

  10. Brandenburg R (2017) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26(5):053001. https://doi.org/10.1088/1361-6595/aa6426

    Article  Google Scholar 

  11. Massines F, Gherardi N, Naudé N, Ségur P (2009) Recent advances in the understanding of homogeneous dielectric barrier discharges. Eur Phys J Appl Phys 47(2):22805. https://doi.org/10.1051/epjap/2009064

    Article  CAS  Google Scholar 

  12. Osawa N, Yoshioka Y (2012) Generation of low-frequency homogeneous dielectric barrier discharge at atmospheric pressure. IEEE Trans Plasma Sci 40(1):2–8. https://doi.org/10.1109/TPS.2011.2172634

    Article  CAS  Google Scholar 

  13. Bazinette R, Subileau R, Paillol J, Massines F (2014) Identification of the different diffuse dielectric barrier discharges obtained between 50 kHz to 9 MHz in Ar/NH3at atmospheric pressure. Plasma Sources Sci Technol 23(3):035008. https://doi.org/10.1088/0963-0252/23/3/035008

    Article  CAS  Google Scholar 

  14. Magnan R, Hagelaar G, Chaker M, Massines F (2021) Atmospheric pressure dual RF–LF frequency discharge: transition from α to α – γ -mode. Plasma Sources Sci Technol 30(1):015010. https://doi.org/10.1088/1361-6595/abd2ce

    Article  CAS  Google Scholar 

  15. Fanelli F, Mastrangelo AM, Fracassi F (2014) Aerosol-assisted atmospheric cold plasma deposition and characterization of superhydrophobic organic-inorganic nanocomposite thin films. Langmuir 30(3):857–865. https://doi.org/10.1021/la404755n

    Article  CAS  PubMed  Google Scholar 

  16. Kandola BK (2001) Nanocomposites. In: Fire retardant materials, Elsevier, pp 204–219. https://doi.org/10.1533/9781855737464.204

  17. Sampaio WRV, Serra PLC, Dantas NO, de Sousa RRM, Silva ACA (2022) Nanocomposites thin films: manufacturing and applications. In: Sharma A (ed) Nanocomposite materials for biomedical and energy storage applications. Rijeka: IntechOpen, p. Ch. 4. https://doi.org/10.5772/intechopen.103961

  18. Garcia MA (2012) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D: Appl Phys 45(38):389501. https://doi.org/10.1088/0022-3727/45/38/389501

    Article  CAS  Google Scholar 

  19. Trügler A (2016) Optical properties of metallic nanoparticles, vol 232. In: Springer series in materials science, vol 232. Cham: Springer. https://doi.org/10.1007/978-3-319-25074-8.

  20. Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys: Condens Matter 29(20):203002. https://doi.org/10.1088/1361-648X/aa60f3

  21. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  22. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nature Mater 9(3):205–213. https://doi.org/10.1038/nmat2629

    Article  CAS  Google Scholar 

  23. Profili J, Levasseur O, Blaisot J-B, Koronai A, Stafford L, Gherardi N (2016) Nebulization of nanocolloidal suspensions for the growth of nanocomposite coatings in dielectric barrier discharges: nebulization of nanocolloidal suspensions…. Plasma Process Polym 13(10):981–989. https://doi.org/10.1002/ppap.201500223

    Article  CAS  Google Scholar 

  24. Brunet P, Rincón R, Matouk Z, Chaker M, Massines F (2018) Tailored waveform of dielectric barrier discharge to control composite thin film morphology. Langmuir 34(5):1865–1872. https://doi.org/10.1021/acs.langmuir.7b03563

    Article  CAS  PubMed  Google Scholar 

  25. Uricchio A, Nadal E, Plujat B, Plantard G, Massines F, Fanelli F (2021) Low-temperature atmospheric pressure plasma deposition of TiO2-based nanocomposite coatings on open-cell polymer foams for photocatalytic water treatment. Appl Surf Sci 561:150014. https://doi.org/10.1016/j.apsusc.2021.150014

    Article  CAS  Google Scholar 

  26. Profili J, Levasseur O, Naudé N, Chaneac C, Stafford L, Gherardi N (2016) Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge. J Appl Phys 120(5):053302. https://doi.org/10.1063/1.4959994

    Article  CAS  Google Scholar 

  27. Nadal E, Milaniak N, Glenat H, Laroche G, Massines F (2021) A new approach for synthesizing plasmonic polymer nanocomposite thin films by combining a gold salt aerosol and an atmospheric pressure low-temperature plasma. Nanotechnology 32(17):175601. https://doi.org/10.1088/1361-6528/abdd60

    Article  PubMed  Google Scholar 

  28. Porel S, Venkatram N, Narayana Rao D, Radhakrishnan TP (2007) In situ synthesis of metal nanoparticles in polymer matrix and their optical limiting applications. J Nanosci Nanotechnol 7(6):1887–1892. https://doi.org/10.1166/jnn.2007.736

  29. Brunet P et al (2017) Control of composite thin film made in an Ar/isopropanol/TiO2 nanoparticles dielectric barrier discharge by the excitation frequency. Plasma Process Polym 14(12):1700049. https://doi.org/10.1002/ppap.201700049

    Article  CAS  Google Scholar 

  30. Jidenko N, Jimenez C, Massines F, Borra J-P (2007) Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition. J Phys D: Appl Phys 40(14):4155–4163. https://doi.org/10.1088/0022-3727/40/14/009

    Article  CAS  Google Scholar 

  31. Vallade J, Bazinette R, Gaudy L, Massines F (2014) Effect of glow DBD modulation on gas and thin film chemical composition: case of Ar/SiH4 /NH3 mixture. J Phys D: Appl Phys 47(22):224006. https://doi.org/10.1088/0022-3727/47/22/224006

    Article  CAS  Google Scholar 

  32. Milaniak N, Laroche G, Massines F (2021) Atmospheric-pressure plasma-enhanced chemical vapor deposition of nanocomposite thin films from ethyl lactate and silica nanoparticles. Plasma Process Polym 18(2):2000153. https://doi.org/10.1002/ppap.202000153

    Article  CAS  Google Scholar 

  33. Bazinette R, Sadeghi N, Massines F (2020) Dual frequency DBD: influence of the amplitude and the frequency of applied voltages on glow, Townsend and radiofrequency DBDs. Plasma Sources Sci Technol 29(9):095010. https://doi.org/10.1088/1361-6595/ab8686

    Article  CAS  Google Scholar 

  34. Haynes WM, éd (2014) Handbook of chemistry and physics, 0 éd. CRC Press. https://doi.org/10.1201/b17118

  35. Toivo MJH-S, Kodas T (1999) Aerosol processing of materials. J Am Chem Soc. https://doi.org/10.1021/ja995709o

  36. Kwon NK, Lee TK, Kwak SK, Kim SY (2017) Aggregation-driven controllable plasmonic transition of silica-coated gold nanoparticles with temperature-dependent polymer-nanoparticle interactions for potential applications in optoelectronic devices. ACS Appl Mater Interfaces 9(45):39688–39698. https://doi.org/10.1021/acsami.7b13123

    Article  CAS  PubMed  Google Scholar 

  37. Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102(4):425. https://doi.org/10.6028/jres.102.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Whitehouse DJ (2002) Handbook of surface and nanometrology, 0 éd. Taylor & Francis. https://doi.org/10.1201/9781420034196

  39. Xie J, Lee JY, Wang DIC (2007) Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. J Phys Chem C 111(28):10226–10232. https://doi.org/10.1021/jp0719715

    Article  CAS  Google Scholar 

  40. Casaletto MP, Longo A, Martorana A, Prestianni A, Venezia AM (2006) XPS study of supported gold catalysts: the role of Au0 and Au+δ species as active sites. Surf Interface Anal 38(4):215–218. https://doi.org/10.1002/sia.2180

  41. Thomas TD, Weightman P (1986) Valence electronic structure of AuZn and AuMg alloys derived from a new way of analyzing Auger-parameter shifts. Phys Rev B 33(8):5406–5413. https://doi.org/10.1103/PhysRevB.33.5406

  42. Galtayries A, Laksono E, Siffre J-M, Argile C, Marcus P (2000) XPS study of the adsorption of NH3 on nickel oxide on Ni(111). Surf Interface Anal 30(1):140–144. https://doi.org/10.1002/1096-9918(200008)30:1%3c140::AID-SIA820%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  43. Li Z, Deng L, Kinloch IA, Young RJ (2023) Raman spectroscopy of carbon materials and their composites: graphene, nanotubes and fibres. Prog Mater Sci 135:101089. https://doi.org/10.1016/j.pmatsci.2023.101089

    Article  CAS  Google Scholar 

  44. Chan MY, Leng W, Vikesland PJ (2018) Surface-enhanced Raman spectroscopy characterization of salt-induced aggregation of gold nanoparticles. ChemPhysChem 19(1):24–28. https://doi.org/10.1002/cphc.201700798

    Article  CAS  PubMed  Google Scholar 

  45. Murphy PJ, LaGrange MS (1998) Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure: a re-evaluation of the effects of pH and chloride concentration. Geochim Cosmochim Acta 62(21–22):3515–3526. https://doi.org/10.1016/S0016-7037(98)00246-4

    Article  CAS  Google Scholar 

  46. Bazinette R, Paillol J, Massines F (2015) Optical emission spectroscopy of glow, Townsend-like and radiofrequency DBDs in an Ar/NH 3 mixture. Plasma Sources Sci Technol 24(5):055021. https://doi.org/10.1088/0963-0252/24/5/055021

    Article  CAS  Google Scholar 

  47. Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961. https://doi.org/10.1021/cr200061k

    Article  CAS  PubMed  Google Scholar 

  48. Pal B, Sen PK, Sen Gupta KK (2001) Reactivity of alkanols and aryl alcohols towards tetrachloroaurate(III) in sodium acetate-acetic acid buffer medium. J Phys Org Chem 14(5):284–294. https://doi.org/10.1002/poc.361

  49. Robert R, Hagelaar G, Sadeghi N, Magnan R, Stafford L, Massines F (2022) Role of excimer formation and induced photoemission on the Ar metastable kinetics in atmospheric pressure Ar–NH 3 dielectric barrier discharges. Plasma Sources Sci Technol 31(6):065010. https://doi.org/10.1088/1361-6595/ac7748

    Article  Google Scholar 

  50. Vasudevan A et al (2022) From faceted nanoparticles to nanostructured thin film by plasma-jet redox reaction of ionic gold. J Alloys Compd 928:167155. https://doi.org/10.1016/j.jallcom.2022.167155

    Article  CAS  Google Scholar 

  51. Nitta K, Shimizu Y, Terashima K, Ito T (2021) Plasma-assisted synthesis of size-controlled monodisperse submicron gold particles using inkjet droplets. J Phys D: Appl Phys 54(33):33LT01. https://doi.org/10.1088/1361-6463/ac02f8

  52. Gachard E, Remita H, Khatouri J, Keita B, Nadjo L, Belloni J (1998) Radiation-induced and chemical formation of gold clusters. New J Chem 22(11):1257–1265. https://doi.org/10.1039/a804445g

    Article  CAS  Google Scholar 

  53. Grzelczak M, Liz-Marzán LM (2014) The relevance of light in the formation of colloidal metal nanoparticles. Chem Soc Rev 43(7):2089–2097. https://doi.org/10.1039/C3CS60256G

    Article  CAS  PubMed  Google Scholar 

  54. Delannoy L, El Hassan N, Musi A, Le To NN, Krafft J-M, Louis C (2006) Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. J Phys Chem B 110(45):22471–22478. https://doi.org/10.1021/jp062130l

    Article  CAS  PubMed  Google Scholar 

  55. Somodi F et al (2008) Modified preparation method for highly active Au/SiO2 catalysts used in CO oxidation. Appl Catal A 347(2):216–222. https://doi.org/10.1016/j.apcata.2008.06.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Agence Nationale de la Recherche (ANR) for the financial support of the PLASSEL project (ANR-21-CE08-0038) and the SEAM Labex (ANR-11-LBX-086, ANR-11-IDEX-0502). R. Rincón was supported by the European Union-NextGenerationEU and the Spanish Ministerio de Universidades (Plan de Recuperacion, Transformación y Resiliencia).

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out as part of a collaborative project involving AP, NB, RR, HG, ST, SGD, XS, PD, SN, BP, SA, JPB, FF, FM. AP, NB, RR, HG, ST, SGD, XS, PD, SN, BP, SA, JPB, FF, FM actively contributed to the writing of the paper. FM, NB, RR, FF, BP supervised the whole work and participated in the whole results analysis and paper writing. FF, BP and AP find the proper parameter of use of the AP-PECVD set-up. AP contributed to the whole experimental work. He specifically took in charge all the samples deposit by AP-PECVD, and thin film UV-vis and plasma emission spectroscopy measurements made in PROMES. He also participated in aerosols and samples characterization. JPB brought his expertise on aerosols and all aerosol characterization were done in his lab. NB specifically made all the calculations relative to the NPs and UV-Vis spectra analysis. RR specifically made emission spectroscopy spectra analysis as well as XPS results analysis. PD, SGD, HG, SN, ST made XPS, SEM-EDS, AFM (made in PROMES), XRD, Raman measurements and results analysis respectively. SA supervised XPS, SEM, EDS, XRD, AFM and Raman characterization and results analysis made in ITODYS correlating the obtained results to each other.

Corresponding author

Correspondence to Françoise Massines.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perdrau, A., Barros, N., Rincón, R. et al. Synthesis of Gold NPs-Containing Thin Films from Metal Salt Injection in Ar or Ar–NH3 DBDs. Plasma Chem Plasma Process 43, 1749–1772 (2023). https://doi.org/10.1007/s11090-023-10400-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10400-4

Keywords

Navigation