Skip to main content
Log in

Effects of LPDBD Plasma and Plasma Activated Water on Germination and Growth in Rapeseed (Brassica napus)

Auswirkungen von LPDBD-Plasma und plasmaaktiviertem Wasser auf die Keimung und das Wachstum von Raps (Brassica napus)

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The study deals with the effect of low pressure dielectric barrier discharge (LPDBD) plasma and plasma activated water (PAW) produced with Ar, O2 and Air on germination and growth in rapeseed. Although H2O2 concentration showed no significant changes, α‑amylase activity (germination inducer) significantly increased in seeds due to LPDBD plasma. In addition, the activity of SOD and CAT was significantly induced in seeds of rapeseed treated with PAW. Rapeseed plants grown from the LPDBD plasma treated seeds showed significant improvements in shoot characteristics, chlorophyll synthesis, total soluble protein and sugar concentration compared to controls. Interestingly, plasma treated plants also showed no significant variations of H2O2 in tissue(s) which is supported by the biochemical and molecular evidence(s) of antioxidant enzymes. Plants exhibited a significant increase in tissue APX and CAT activities along with BnAPX and BnCAT expression(s) in roots when seeds were treated with LPDBD Air/O2 and PAW O2. This suggests that LPDBD plasma might have been involved with elevated level of reactive oxygen species, which was tightly controlled through the upregulation of APX and CAT activities and thus trigger the growth and development in rapeseed plants. These findings reveal the role and mechanisms of LPDBD technique facilitating germination and growth in rapeseed plants.

Zusammenfassung

Die Studie beschäftigt sich mit der Wirkung von Niederdruckplasma mit dielektrischer Barriereentladung (engl. low pressure dielectric barrier discharge plasma, LPDBD plasma) und plasmaaktiviertem Wasser (PAW), die mit Ar, O2 und Luft hergestellt werden, auf die Keimung und das Wachstum von Raps. Obwohl die H2O2-Konzentration keine signifikanten Veränderungen zeigte, stieg die α‑Amylase-Aktivität (Keimungsinduktor) im Saatgut durch das LPDBD-Plasma signifikant an. Darüber hinaus wurde die Aktivität von SOD und CAT in Rapssamen, die mit PAW behandelt wurden, signifikant induziert. Rapspflanzen aus dem mit LPDBD-Plasma behandelten Saatgut zeigten signifikante Verbesserungen der Sprosseigenschaften, der Chlorophyllsynthese, der Gesamtprotein- und Zuckerkonzentration im Vergleich zur Kontrolle. Interessanterweise zeigten plasmabehandelte Pflanzen auch keine signifikanten Variationen von H2O2 in Gewebe(n), was durch die biochemischen und molekularen Nachweise von antioxidativen Enzymen bestätigt wird. Pflanzen zeigten einen signifikanten Anstieg der Gewebe-APX- und CAT-Aktivitäten sowie der BnAPX- und BnCAT-Expression(en) in den Wurzeln, wenn Samen mit LPDBD Luft/O2 und PAW O2 behandelt wurden. Dies deutet darauf hin, dass LPDBD-Plasma an einem erhöhten Level an reaktiven Sauerstoffspezies beteiligt gewesen sein könnte, was durch die Hochregulierung der APX- und CAT-Aktivitäten streng kontrolliert wurde und somit das Wachstum und die Entwicklung von Rapspflanzen auslöste. Diese Ergebnisse tragen zum Verständnis der Rolle und der Mechanismen der LPDBD-Technik bei. Durch den Einsatz dieser Technik können die Keimung und das Wachstum von Rapspflanzen verbessert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat Plant. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Almeselmani M, Deshmukh P, Sairam R, Kushwaha S, Singh T (2006) Protective role of antioxidant enzymes under high temperature stress Plant. Science 171:382–388

    CAS  Google Scholar 

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331:806–814

    Article  CAS  PubMed  Google Scholar 

  • Beck E, Ziegler P (1989) Biosynthesis and degradation of starch in higher plants Annual review of plant. Biology (Basel) 40:95–117

    CAS  Google Scholar 

  • Du CM, Wang J, Zhang L, Li HX, Liu H, Xiong Y (2012) The application of a non-thermal plasma generated by gas–liquid gliding arc discharge in sterilization. New J Phys 14:13010

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Goud PB, Kachole MS (2012) Antioxidant enzyme changes in neem, pigeonpea and mulberry leaves in two stages of maturity. Plant Signal Behav 7:1258–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Q, Wang Y, Zhang H, Qu G, Wang T, Sun Q, Liang D (2017) Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci Rep 7:16680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy C, Haskell D, Neven L, Klein P, Smelser C (1992) Hydration-state-responsive proteins link cold and drought stress in spinach. Planta 188:265–270

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil Circular. California agricultural experiment station 347

    Google Scholar 

  • Jeevan Kumar S, Rajendra Prasad S, Banerjee R, Thammineni C (2015) Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot 116:663–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junior CA, de Oliveira Vitoriano J, Da Silva DLS, de Lima Farias M, de Lima Dantas NB (2016) Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma. Sci Rep 6:33722

    Article  CAS  Google Scholar 

  • Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (2002) The α‑amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiol 128:1264–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranner I, Roach T, Beckett RP, Whitaker C, Minibayeva FV (2010) Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol 167:805–811

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu X, Khan MA, Yamaguchi S (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. J Plant Res 118:207–214

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11:591–592

    Article  CAS  Google Scholar 

  • Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H, Hanliang S, Yuanhua D (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malar S, Vikram SS, Favas PJ, Perumal V (2016) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55:54

    Article  CAS  PubMed  Google Scholar 

  • Meiqiang Y, Mingjing H, Buzhou M, Tengcai M (2005) Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield Plasma. Sci Technol 7:3143

    Google Scholar 

  • Meng Y, Qu G, Wang T, Sun Q, Liang D, Hu S (2017) Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem Plasma Process 37:1105–1119

    Article  CAS  Google Scholar 

  • Mitra A, Li Y‑F, Klämpfl TG, Shimizu T, Jeon J, Morfill GE, Zimmermann JL (2014) Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food Bioproc Tech 7:645–653

    Article  CAS  Google Scholar 

  • Noctor G et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Park G et al (2012) Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci Technol 21:43001

    Article  CAS  Google Scholar 

  • Rahman MM, Sajib SA, Rahi MS, Tahura S, Roy NC, Parvez S, Reza MA, Talukder MR, Kabir AH (2018) Mechanisms and signaling associated with LPDBD plasma mediated growth improvement in wheat. Scientific Reports 8(1)

  • Roy N, Hasan M, Talukder M, Hossain M, Chowdhury A (2018) Prospective applications of low frequency glow discharge plasmas on enhanced germination, growth and yield of wheat. Plasma Chem Plasma Process 38:13–28

    Article  CAS  Google Scholar 

  • Sarinont T, Katayama R, Wada Y, Koga K, Shiratani M (2017) Plant growth enhancement of seeds immersed in plasma activated water. MRS Adv 2:995–1000

    Article  CAS  Google Scholar 

  • Šerá B, Šerý M, Štrañák V, Špatenka P (2009) Does cold plasma affect breaking dormancy and seed germination? a study on seeds of Lamb’s quarters (Chenopodium album agg.). Plasma Sci Technol 11:750

    Article  Google Scholar 

  • Sera B, Spatenka P, Sery M, Vrchotová N, Hruskova I (2010) Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci 38:2963–2968

    Article  Google Scholar 

  • Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7:1822–1832

    Article  CAS  Google Scholar 

  • Sreethawong T, Thakonpatthanakun P, Chavadej S (2007) Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system. Int J Hydrogen Energy 32:1067–1079

    Article  CAS  Google Scholar 

  • Sun M, Zigman S (1978) An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem 90:81–89

    Article  CAS  PubMed  Google Scholar 

  • Valencia A, Bustillo AE, Ossa GE, Chrispeels MJ (2000) α‑Amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochem Mol Biol 30:207–213

    Article  CAS  PubMed  Google Scholar 

  • Volin JC, Denes FS, Young RA, Park SM (2000) Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40:1706–1718

    Article  CAS  Google Scholar 

  • Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu L, Li X, Tu X, Wang Y, Lu S, Yan J (2009) Decomposition of naphthalene by dc gliding arc gas discharge. J Phys Chem A 114:360–368

    Article  CAS  Google Scholar 

  • Zhao C et al (2016) Field warming experiments shed light on the wheat yield response to temperature in China. Nat Commun 7:13530

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Huang Y, Yang S, Chen W (2011) Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agric Sci 2:23–27

    Google Scholar 

Download references

Acknowledgements

We are grateful to Bioresearch Technologies, Denmark, for supplying primers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Humayan Kabir.

Ethics declarations

Conflict of interest

S. Islam, F.B. Omar, S.A. Sajib, N.C. Roy, A. Reza, M. Hasan, M.R. Talukder and A.H. Kabir declare that they have no competing interests.

Caption Electronic Supplementary Material

Supplementary Fig. S1. a

 Schematic diagram of LPDBD plasma for rapeseed treatment with Ar/O2 and Ar/Air gases, b V-I waveform of Ar/Air LPDBD plasma measured at applied voltage 3 kV and electrode spacing 30 mm and c emitted spectrum from Air/O2 and Ar/Air LPDBD plasmas at applied voltage \(3kV\) and electrode spacing 30 mm.

Supplementary Fig. S2. a

 Schematic diagram for the generation of PAW with Ar and O2, b V-I waveform of H2O/Ar Arc measured at applied voltage 3 kV and electrode spacing 15 mm and c emitted spectrum from H2O/O2 and H2O/Ar Arc discharge plasmas at applied voltage 3 kV and electrode spacing 15 mm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, S., Omar, F.B., Sajib, S.A. et al. Effects of LPDBD Plasma and Plasma Activated Water on Germination and Growth in Rapeseed (Brassica napus). Gesunde Pflanzen 71, 175–185 (2019). https://doi.org/10.1007/s10343-019-00463-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-019-00463-9

Keywords

Schlüsselwörter

Navigation