Skip to main content
Log in

Plasma Enhanced Chemical Vapor Deposition of Poly(Cyclohexyl Methacrylate) as a Sacrificial Thin Film

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this study, thin films of poly(cyclohexyl methacrylate) (PCHMA) were deposited on silicon wafer using PECVD technique, in which the plasma power is inductively coupled through a quartz window using a planar-coil antenna, which was placed outside of the vacuum chamber. PCHMA is a desired sacrificial polymer for many applications because of its hydrophobicity and clean decomposition properties upon thermal annealing. During PECVD of PCHMA, the effects of plasma power and substrate temperature on the deposition rates and structural properties of as-deposited films were investigated. The highest deposition rate (46.5 nm/min) was observed at a low substrate temperature (15 °C) and at a high applied plasma power (30 W). FTIR and XPS analyses of the deposited films confirmed that the percentage of retained functional groups was increased if the intensity of applied plasma power was lowered. As-deposited PCHMA was found to decompose cleanly upon thermal annealing. The onset of thermal decomposition was 89 °C for the film deposited at 5 W applied plasma power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Orr CA, Cernohous JJ, Guegan P, Hirao A, Keon HK, Mocosko CW (2001) Homogeneous reactive coupling of terminally functional polymers. Polymer 42(19):8171–8178. https://doi.org/10.1016/s0032-3861(01)00329-9

    Article  CAS  Google Scholar 

  2. Frechet JM (1994) Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263(5154):1710–1715. https://doi.org/10.1126/science.8134834

    Article  CAS  PubMed  Google Scholar 

  3. Kenley RA, Manser GE (1985) Degradable polymers. Incorporating a difunctional azo compound into a polymer network to produce thermally degradable polyurethanes. Macromolecules 18:127–131. https://doi.org/10.1021/ma00144a002

    Article  CAS  Google Scholar 

  4. Kim SH, Yoon J, Yun SO, Hwang Y, Jang HS, Ko HC (2013) Ultrathin sticker-type ZnO thin film transistors formed by transfer printing via topological confinement of water-soluble sacrificial polymer in dimple structure. Adv Func Mater 23(11):1375–1382. https://doi.org/10.1002/adfm.201202409

    Article  CAS  Google Scholar 

  5. Ferrell N, Woodard J, Hansford DJBM (2007) Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding. Biomed Microdev 9(6):815–821. https://doi.org/10.1007/s10544-007-9094-y

    Article  CAS  Google Scholar 

  6. Joshi M, Kale N, Lal R, Ramgopal Rao V, Mukherji S (2007) A novel dry method for surface modification of SU-8 for immobilization of biomolecules in Bio-MEMS. Biosens Bioelectron 22(11):2429–2435. https://doi.org/10.1016/j.bios.2006.08.045

    Article  CAS  PubMed  Google Scholar 

  7. Martin H, Edgar V (2002) Bulk silicon micromachining for MEMS in optical communication systems. J Micromech Microeng 12(4):349. https://doi.org/10.1088/0960-1317/12/4/301

    Article  Google Scholar 

  8. Casserly TB, Gleason KK (2006) Effect of substrate temperature on the plasma polymerization of poly(methyl methacrylate). Chem Vap Deposition 12(1):59–66. https://doi.org/10.1002/cvde.200506409

    Article  CAS  Google Scholar 

  9. Lv A, Cui Y, Du F-S, Li Z-C (2016) Thermally degradable polyesters with tunable degradation temperatures via postpolymerization modification and intramolecular cyclization. Macromolecules 49(22):8449–8458. https://doi.org/10.1021/acs.macromol.6b01325

    Article  CAS  Google Scholar 

  10. Hollie AR, Celesta EW, Vikram R, Sue Ann Bidstrup A, Clifford LH, Paul AK (2001) Fabrication of microchannels using polycarbonates as sacrificial materials. J Micromech Microeng 11(6):733. https://doi.org/10.1088/0960-1317/11/6/317

    Article  Google Scholar 

  11. Metz S, Jiguet S, Bertsch A, Renaud P (2004) Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab Chip 4(2):114–120. https://doi.org/10.1039/B310866J

    Article  CAS  PubMed  Google Scholar 

  12. Kelvin Chan KKG (2006) Air-gap fabrication using a sacrificial polymeric thin film synthesized via initiated chemical vapor deposition. J Electrochem Soc 153(4):C223–C228. https://doi.org/10.1149/1.2168297

    Article  CAS  Google Scholar 

  13. Boucinha M, Chu V, Conde JP (1998) Air-gap amorphous silicon thin film transistors. Appl Phys Lett 73(4):502–504. https://doi.org/10.1063/1.121914

    Article  CAS  Google Scholar 

  14. Kohl PA, Zhao Q, Patel K, Schmidt D, Bidstrup-Allen SA, Shick R, Jayaraman S (1998) Air-gaps for electrical interconnections. Electrochem Solid-State Lett 1(1):49–51. https://doi.org/10.1149/1.1390631

    Article  CAS  Google Scholar 

  15. Jayachandran JP, Reed HA, Hongshi Z, Rhodes LF, Henderson CL, Allen SAB, Kohl PA (2003) Air-channel fabrication for microelectromechanical systems via sacrificial photosensitive polycarbonates. J Microelectromech Syst 12(2):147–159. https://doi.org/10.1109/JMEMS.2003.809963

    Article  CAS  Google Scholar 

  16. Long Hua Lee KKG (2008) Cross-linked organic sacrificial material for air gap formation by initiated chemical vapor deposition. J Electrochem Soc 155(4):G78–G86. https://doi.org/10.1149/1.2837838

    Article  CAS  Google Scholar 

  17. Ozaydin-Ince G, Gleason KK (2010) Thermal stability of acrylic/methacrylic sacrificial copolymers fabricated by initiated chemical vapor deposition. J Electrochem Soc 157(1):D41–D45. https://doi.org/10.1149/1.3251308

    Article  CAS  Google Scholar 

  18. Tarducci C, Schofield WCE, Badyal JPS, Brewer SA, Willis C (2002) Monomolecular functionalization of pulsed plasma deposited poly(2-hydroxyethyl methacrylate) surfaces. Chem Mater 14(6):2541–2545. https://doi.org/10.1021/cm010939z

    Article  CAS  Google Scholar 

  19. Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H, Ozaydin-Ince G, Petruczok CD, Sreenivasan R, Tenhaeff WE, Trujillo NJ, Vaddiraju S, Xu J, Gleason KK (2010) Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv Mater 22(18):1993–2027. https://doi.org/10.1002/adma.200902765

    Article  CAS  PubMed  Google Scholar 

  20. Clark DT, Abu-Shbak MM (1983) Plasma polymerization. IX. A systematic investigation of materials synthesized in inductively coupled plasmas excited in perfluoropyridine. J Polym Sci: Polym Chem Ed 21(10):2907–2919. https://doi.org/10.1002/pol.1983.170211006

    Article  CAS  Google Scholar 

  21. Han LM, Timmons RB, Lee WW (2000) Pulsed plasma polymerization of an aromatic perfluorocarbon monomer: formation of low dielectric constant, high thermal stability films. J Vac Sci Technol B: Microelectron Nanometer Struct Process Measur Phenomena 18(2):799–804. https://doi.org/10.1116/1.591279

    Article  CAS  Google Scholar 

  22. Gürsoy M, Uçar T, Tosun Z, Karaman M (2016) Initiation of 2-hydroxyethyl methacrylate polymerization by tert-butyl peroxide in a planar PECVD system. Plasma Process Polym 13(4):438–446. https://doi.org/10.1002/ppap.201500091

    Article  CAS  Google Scholar 

  23. Manring LE (1988) Thermal degradation of saturated poly(methyl methacrylate). Macromolecules 21(2):528–530. https://doi.org/10.1021/ma00180a046

    Article  CAS  Google Scholar 

  24. Malhotra SL, Minh L, Blanchard LP (1983) Thermal decomposition and glass transition temperature of poly(phenyl methacrylate) and poly(cyclohexyl methacrylate). J Macromol Sci: Part A Chem 19(7):967–986. https://doi.org/10.1080/00222338308081078

    Article  Google Scholar 

  25. O’Shaughnessy WS, Baxamusa S, Gleason KK (2007) Additively patterned polymer thin films by photo-initiated chemical vapor deposition (piCVD). Chem Mater 19(24):5836–5838. https://doi.org/10.1021/cm071381j

    Article  CAS  Google Scholar 

  26. Karaman M, Çabuk N (2012) Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino)ethyl methacrylate thin films. Thin Solid Films 520(21):6484–6488. https://doi.org/10.1016/j.tsf.2012.06.083

    Article  CAS  Google Scholar 

  27. Pierson HO (1999) Fundamentals of chemical vapor deposition. In: Pierson HO (ed) Handbook of chemical vapor deposition (CVD), 2nd edn. William Andrew Publishing, Norwich, pp 36–67. https://doi.org/10.1016/b978-081551432-9.50005-x

    Chapter  Google Scholar 

  28. Hegemann D, Körner E, Guimond S (2009) Plasma polymerization of acrylic acid revisited. Plasma Process Polym 6(4):246–254. https://doi.org/10.1002/ppap.200800089

    Article  CAS  Google Scholar 

  29. Hegemann D, Hossain MM, Körner E, Balazs DJ (2007) Macroscopic description of plasma polymerization. Plasma Process Polym 4(3):229–238. https://doi.org/10.1002/ppap.200600169

    Article  CAS  Google Scholar 

  30. Yasuda H, Hirotsu T (1978) Critical evaluation of conditions of plasma polymerization. J Polym Sci: Polym Chem Ed 16(4):743–759. https://doi.org/10.1002/pol.1978.170160403

    Article  CAS  Google Scholar 

  31. Scheltjens G, Da Ponte G, Paulussen S, De Graeve I, Terryn H, Reniers F, Van Assche G, Van Mele B (2015) Thermal properties of plasma deposited methyl methacrylate films in an atmospheric DBD reactor. Plasma Process Polym 12(3):260–270. https://doi.org/10.1002/ppap.201400143

    Article  CAS  Google Scholar 

  32. Beamson G, Briggs D (1993) High resolution xps of organic polymers: the scienta ESCA300 database. J Chem Educ 70(1):A25. https://doi.org/10.1021/ed070pa25.5

    Article  Google Scholar 

  33. Cho SH, Park ZT, Kim JG, Boo JH (2003) Physical and optical properties of plasma polymerized thin films deposited by PECVD method. Surf Coat Technol 174–175:1111–1115. https://doi.org/10.1016/S0257-8972(03)00596-6

    Article  CAS  Google Scholar 

  34. Matsumoto A, Mizuta K, Otsu T (1993) Synthesis and thermal properties of poly(cycloalkyl methacrylate)s bearing bridged- and fused-ring structures. J Polym Sci, Part A: Polym Chem 31(10):2531–2539. https://doi.org/10.1002/pola.1993.080311014

    Article  CAS  Google Scholar 

  35. Ito H, Ueda M (1988) Thermolysis and photochemical acidolysis of selected polymethacrylates. Macromolecules 21(5):1475–1482. https://doi.org/10.1021/ma00183a043

    Article  CAS  Google Scholar 

  36. DePuy CH, King RW (1960) Pyrolytic cis eliminations. Chem Rev 60(5):431–457. https://doi.org/10.1021/cr60207a001

    Article  CAS  Google Scholar 

  37. Scheltjens G, Da Ponte G, Paulussen S, De Graeve I, Terryn H, Reniers F, Van Assche G, Van Mele B (2016) Deposition kinetics and thermal properties of atmospheric plasma deposited methacrylate-like films. Plasma Process Polym 13(5):521–533. https://doi.org/10.1002/ppap.201500137

    Article  CAS  Google Scholar 

  38. Biederman H, Slavı́nská D (2000) Plasma polymer films and their future prospects. Surf Coat Technol 125(1):371–376. https://doi.org/10.1016/S0257-8972(99)00578-2

    Article  CAS  Google Scholar 

  39. Holländer A, Thome J (2004) Degradation and stability of plasma polymers. In: Plasma Polymer Films. Imperial College Press And Distributed By World Scientific Publishing Co., pp 247–277. https://doi.org/10.1142/9781860945380_0007

    Chapter  Google Scholar 

Download references

Acknowledgements

This project was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) with a Grant Number of 213M399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Karaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yartaşı, Y., Karaman, M. Plasma Enhanced Chemical Vapor Deposition of Poly(Cyclohexyl Methacrylate) as a Sacrificial Thin Film. Plasma Chem Plasma Process 40, 357–369 (2020). https://doi.org/10.1007/s11090-019-10038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10038-1

Keywords

Navigation