Skip to main content
Log in

Seed Priming with Non-thermal Plasma Modified Plant Reactions to Selenium or Zinc Oxide Nanoparticles: Cold Plasma as a Novel Emerging Tool for Plant Science

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This research explored the capability of seed priming with the non-thermal plasma to modify reactions of Melissa officinalis, an important medicinal plant, to zinc oxide (nZnO) or selenium (nSe) nanoparticles. The germinating seeds were primed with the plasma (0.84Wcm−2 surface power densities) under different durations (0, 50, 90, and 120 s); after that the primed seeds were cultured in petri dish containing Hoagland nutrient solution manipulated with various concentrations of nSe (0, 2, 5, 10, and 20 mgl−1) or nZnO (0, 50, and 250 mgl−1). The plasma treatments not only improved growth-related characteristics (stem length, root length, and leaf wide) and biomass accumulation but also toxicity signs of nSe (5, 10, and 20 mgl−1) were partly mitigated by the plasma priming. Interestingly, the plasma treatments induced peroxidase activity about 46%. Similarly, inductions in the activity of phenylalanine ammonia lyase were recorded in the plasma-primed seedlings. The correlations between the evaluated traits were found to be significant. Taken collectively, it could be exploited for delivering a novel tool regarding seed priming, biofortification, and seed/seedling-derived foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iranbakhsh A, Ghoranneviss M, Oraghi Ardebili Z, Oraghi Ardebili N, Hesami Tackallou S, Nikmaram H (2017) Non-thermal plasma modified growth and physiology in Triticum aestivum via generated signaling molecules and UV radiation. Biol Plant 61:702–708

    Article  CAS  Google Scholar 

  2. Bourke P, Ziuzina D, Boehm D, Cullen P, Keener K (2018) The potential of cold plasma for safe and sustainable food production. Trends Biotech. https://doi.org/10.1016/j.tibtech.2017.11.001

    Article  Google Scholar 

  3. Iranbakhsh A, Ardebili NO, Ardebili ZO, Shafaati M, Ghoranneviss M (2018) Non-thermal plasma induced expression of heat shock factor A4A and improved wheat (Triticum aestivum L.) growth and resistance against salt stress. Plasma Chem Plasma Process 38(1):29–44

    Article  CAS  Google Scholar 

  4. Sera B, Sery M, Gavril B, Gajdova I (2017) Seed germination and early growth responses to seed pre-treatment by non-thermal plasma in hemp cultivars (Cannabis sativa L.). Plasma Chem Plasma Process 37:207–221

    Article  CAS  Google Scholar 

  5. Iranbakhsh A, Ardebili ZO, Ardebili NO, Ghoranneviss M, Safari N (2018) Cold plasma relieved toxicity signs of nano zinc oxide in Capsicum annuum cayenne via modifying growth, differentiation, and physiology. Acta Physiol Plant 40(8):154

    Article  CAS  Google Scholar 

  6. Bußler S, Herppich WB, Neugart S, Schreiner M, Ehlbeck J, Rohn S, Schlüter O (2015) Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum ‘Salamanca’). Food Res Int 76:132–141

    Article  CAS  Google Scholar 

  7. Møller I, Jensen P, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  CAS  PubMed  Google Scholar 

  8. Jiang J, Lu Y, Li J, Ling L, He X, Shao H, Dong Y (2014) Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). PLoS ONE 9:e97753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process 35:659–676

    Article  CAS  Google Scholar 

  10. Sadhu S, Thirumdas R, Deshmukh R, Annapure US (2017) Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate). LWT-food Sci Tech 78:97–104

    Article  CAS  Google Scholar 

  11. Ling L, Jiang J, Jiangang L, Minchong S, Xin H, Hanliang S, Yuanhua D (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Safari N, Iranbakhsh A, Oraghi Ardebili Z (2017) Non-thermal plasma modified growth and differentiation process of Capsicum annuum PP805 Godiva in in vitro conditions. Plasma Sci Tech 19:055501

    Article  CAS  Google Scholar 

  13. Singh H, Jassal RK, Kang JS, Sandhu SS, Kang H, Grewal K (2015) Seed priming techniques in field crops-a review. Agric Rev 36:251–264

    Google Scholar 

  14. Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293

    Article  CAS  PubMed  Google Scholar 

  15. Safari M, Ardebili ZO, Iranbakhsh A (2018) Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A), and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiol Plant 40:117

    Article  CAS  Google Scholar 

  16. Ardebili NO, Saadatmand S, Niknam V, Khavari-Nejad RA (2014) The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiol Plant 36:3199–3205

    Article  CAS  Google Scholar 

  17. Ardebili ZO, Oraghi Ardebili N, Jalili S, Safiallah S (2015) The modified qualities of basil plants by selenium and/or ascorbic acid. Turkish J Bot 39:401–407

    Article  CAS  Google Scholar 

  18. Puccinelli M, Malorgio F, Rosellini I, Pezzarossa B (2017) Uptake and partitioning of selenium in basil (Ocimum basilicum L.) plants grown in hydroponics. Sci Hort 225:271–276

    Article  CAS  Google Scholar 

  19. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  20. Asgari-Targhi G, Iranbakhsh A, Oraghi Ardebili Z (2018) Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem 127:393–402

    Article  CAS  PubMed  Google Scholar 

  21. Hemeda H, Hanaa M, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55:184–185

    Article  CAS  Google Scholar 

  22. Beaudoin-Eagan LD, Thorpe TD (1985) Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiol 78:438–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sheteiwy MS, An J, Yin M, Jia X, Guan Y, He F, Hu J (2018) Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. Protoplasma 8:1–21

    Google Scholar 

  24. Kyzek S, Holubová Ľ, Medvecká V, Zahoranová A, Ševčovičová A, Gálová E (2017) Genotoxic effect of low temperature plasma treatment on plant seeds. Toxicol Lett 280:S119

    Article  Google Scholar 

  25. Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    Article  CAS  PubMed  Google Scholar 

  27. Huché-Thélier L, Crespel L, Le Gourrierec J, Morel P, Sakr S, Leduc N (2016) Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environ Exp Bot 121:22–38

    Article  CAS  Google Scholar 

  28. Tamaoki M (2008) The role of phytohormone signaling in ozone-induced cell death in plants. Plant Signal Behav 3(3):166–174

    Article  PubMed  PubMed Central  Google Scholar 

  29. Samuel MA, Miles GP, Ellis BE (2000) Ozone treatment rapidly activates MAP kinase signalling in plants. Plant J 22(4):367–376

    Article  CAS  PubMed  Google Scholar 

  30. Ahlfors R, Macioszek V, Rudd J, Brosché M, Schlichting R, Scheel D, Kangasjärvi J (2004) Stress hormone independent activation and nuclear translocation of mitogen activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J 40(4):512–522

    Article  CAS  PubMed  Google Scholar 

  31. Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Nat Acad Sci 108(45):18506–18511

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhou R, Zhou R, Zhang X, Zhuang J, Yang S, Bazaka K, Ostrikov K (2016) Effects of atmospheric-pressure N2, He, Air, and O2 microplasmas on mung bean seed germination and seedling growth. Sci Rep 6:32603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Corresponding author specially would like to acknowledge of Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. Authors would like to thank Prof. Mahmood Ghoranneviss, M.Sc. Hamed Nikmaram, M.Sc. Maryam Amini, and M.Sc. Hosseini for their benevolent and professional collaborations in the research procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Iranbakhsh.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babajani, A., Iranbakhsh, A., Oraghi Ardebili, Z. et al. Seed Priming with Non-thermal Plasma Modified Plant Reactions to Selenium or Zinc Oxide Nanoparticles: Cold Plasma as a Novel Emerging Tool for Plant Science. Plasma Chem Plasma Process 39, 21–34 (2019). https://doi.org/10.1007/s11090-018-9934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9934-y

Keywords

Navigation