Skip to main content
Log in

Determination of the Dominant Species and Reactions in Non-equilibrium CO2 Thermal Plasmas with a Two-Temperature Chemical Kinetic Model

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

It has become increasingly clear that deviations from local thermodynamic equilibrium occur in thermal plasmas. This paper is devoted to investigating the non-equilibrium characteristics of CO2 thermal plasmas, which have wide application in industry. A two-temperature chemical kinetic model with a comprehensive chemical system is developed to calculate the non-equilibrium characteristics of CO2 thermal plasmas for a wide temperature range, from 12,000 to 500 K, at atmospheric pressure. The non-equilibrium results are compared to the equilibrium composition obtained by Gibbs free energy minimization, and significant deviations are found at lower temperatures. Based on the dependence of molar fractions on temperature, the dominant species are determined in three temperature ranges. The dominant reactions are then obtained by considering their contribution to the generation and loss of the dominant species. Using the dominant species and reactions, the full model is simplified into three simpler models and the accuracy of the simplified models is evaluated. It is shown that this approach greatly reduces the number of species and reactions considered, while showing good agreement with the full model, with a root-mean-square error of no more than 4 %. Thus, the complicated physicochemical processes in non-equilibrium CO2 thermal plasmas can be characterized by relatively few species and reactions. It is suggested that the two-temperature chemical kinetic model developed in this paper can be applied to the full range of pressures that occur in arc welding, arc quenching and other industrial applications. In addition, the simplified methods can be applied in multi-dimensional models to reduce the chemical complexity and computing time while capturing the main physicochemical processes in non-equilibrium CO2 thermal plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li TQ, Wu CS (2015) Int J Adv Manuf Technol 78(1–4):593–602

    Article  Google Scholar 

  2. Liu ZM, Liu YK, Wu CS, Luo Z (2015) Weld J 94(6):196S–202S

    Google Scholar 

  3. Bidajwala RC, Trivedi MMA (2015) Int J Innov Res Sci Technol 1(7):147–149

    Google Scholar 

  4. Ranga Janardhana G, Senthil Kumar M, Dhanasekar B (2015) Appl Mech Mater 719:46–49

    Article  Google Scholar 

  5. Schlegel N, Ebert S, Mauer G, Vassen R (2015) J Thermal Spray Technol 24(1–2):144–151

    CAS  Google Scholar 

  6. Sokołowski P, Łatka L, Pawłowski L, Ambroziak A, Kozerski S, Nait-Ali B (2015) Surf Coat Technol 268:147–152

    Article  Google Scholar 

  7. Rong MZ, Zhong LL, Cressault Y, Gleizes A, Wang XH, Chen F, Zheng H (2014) J Phys D Appl Phys 47(49):495202

    Article  Google Scholar 

  8. Zhong LL, Wang XH, Yang AJ, Liu DX, Wu Y, Rong MZ (2014) Predominant particles in SF6-Cu mixture at temperatures of 300–50,000 K. In: 20th International conference on gas discharges and their applications Orléans, France

  9. Rat V, Murphy AB, Aubreton J, Elchinger MF, Fauchais P (2008) J Phys D Appl Phys 41(18):183001

    Article  Google Scholar 

  10. Wang X, Zhong L, Rong M, Yang A, Liu D, Wu Y, Miao S (2015) J Phys D Appl Phys 48(15):155205

    Article  Google Scholar 

  11. Wang X, Zhong L, Cressault Y, Gleizes A, Rong M (2014) J Phys D Appl Phys 47(49):495201

    Article  Google Scholar 

  12. Coufal O (1998) J Phys D Appl Phys 31(16):2025

    Article  CAS  Google Scholar 

  13. Murphy AB, Arundell CJ (1994) Plasma Chem Plasma Process 14(4):451–490

    Article  CAS  Google Scholar 

  14. Cressault Y, Gleizes A, Riquel G (2012) J Phys D Appl Phys 45(26):265202

    Article  Google Scholar 

  15. Girard R, Belhaouari JB, Gonzalez JJ, Gleizes A (1999) J Phys D Appl Phys 32(22):2890

    Article  CAS  Google Scholar 

  16. Amakawa T, Jenista J, Heberlein J, Pfender E (1998) J Phys D Appl Phys 31(20):2826–2834

    Article  CAS  Google Scholar 

  17. Tanaka M, Ushio M (1999) J Phys D Appl Phys 32(10):906–912

    Article  CAS  Google Scholar 

  18. Almeida RMS, Belinov MS, Naidis GV (2000) J Phys D Appl Phys 33(8):960–967

    Article  CAS  Google Scholar 

  19. Li H-P, Belinov MS (2007) J Phys D Appl Phys 40(7):2010–2017

    Article  CAS  Google Scholar 

  20. Yang G, Heberlein J (2007) Plasma Sources Sci Technol 16(3):529–542

    Article  CAS  Google Scholar 

  21. Wang WZ, Rong MZ, Yan JD, Murphy AB, Spencer JW (2011) Phys Plasma 18(11):113502

    Article  Google Scholar 

  22. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Spectrochim Acta Part B Atom Spectrosc 61(1):2–30

    Article  Google Scholar 

  23. Kim IS, Son JS, Kim IG, Kim JY, Kim OS (2003) J Mater Process Technol 136(1):139–145

    Article  CAS  Google Scholar 

  24. Wilhelm G, Gött G, Schöpp H, Uhrlandt D (2010) J Phys D Appl Phys 43(43):434004

    Article  Google Scholar 

  25. Kang MJ, Rhee S (2001) Sci Technol Welding Joining 6(2):94–102

    Article  CAS  Google Scholar 

  26. Tokihiko K, Rinsei I, Koichi Y, Yoshinori H (2009) Sci Technol Weld Join 14(8):740–746

    Article  CAS  Google Scholar 

  27. Lu S, Fujii H, Nogi K (2008) J Mater Sci 43(13):4583–4591

    Article  CAS  Google Scholar 

  28. Stoller PC, Seeger M, Iordanidis A, Naidis GV (2013) IEEE Trans Plasma Sci 41(8):2359–2369

    Article  CAS  Google Scholar 

  29. LTA 72D1 CO2 High Voltage Circuit Breaker www.ABB.com/highvoltage

  30. Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2001) J Phys D Appl Phys 34(14):2191

    Article  CAS  Google Scholar 

  31. Borge E (1995) Thèse Université Paul Sabatier, Toulouse No 2051

  32. André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2001) Plasma Chem Plasma Process 21(1):83–105

    Article  Google Scholar 

  33. Zhong L, Yang A, Wang X, Liu D, Wu Y, Rong M (2014) Phys Plasmas 21(5):053506

    Article  Google Scholar 

  34. Sun H, Rong M, Wu Y, Chen Z, Yang F, Murphy AB, Zhang H (2015) J Phys D Appl Phys 48(5):055201

    Article  Google Scholar 

  35. Yang A, Liu Y, Sun B, Wang X, Cressault Y, Zhong L, Niu C (2015) J Phys D Appl Phys 48(49):495202

    Article  Google Scholar 

  36. Chen Z, Niu C, Zhang H, Sun H, Wu Y, Yang F, Xu Z (2015) In: 3rd international conference on electric power equipment—switching technology (ICEPE-ST), pp 36–39

  37. Li X, Guo X, Zhao H, Jia S, Murphy AB (2015) J Appl Phys 117(14):143302

    Article  Google Scholar 

  38. Yang A, Wang X, Rong M, Liu D, Iza F, Kong MG (2011) Phys Plasma 18(11):113503

    Article  Google Scholar 

  39. Liu DX, Yang AJ, Wang XH, Rong MZ, Iza F, Kong MG (2012) J Phys D Appl Phys 45(30):305205

    Article  Google Scholar 

  40. Yang A, Rong M, Wang X, Liu D, Kong MG (2013) J Phys D Appl Phys 46(41):415201

    Article  Google Scholar 

  41. Yang A, Liu D, Rong M, Wang X, Kong MG (2014) Phys Plasma 21(8):083501

    Article  Google Scholar 

  42. Brand KP, Kopainsky J (1978) Appl Phys 16(4):425–432

    Article  CAS  Google Scholar 

  43. Bartlová M, Coufal O (2002) J Phys D Appl Phys 35(23):3065

    Article  Google Scholar 

  44. Adamec L, Coufal O (1999) J Phys D Appl Phys 32(14):1702

    Article  CAS  Google Scholar 

  45. Coll I, Casanovas AM, Vial L, Gleizes A, Casanovas J (2000) J Phys D Appl Phys 33(3):221

    Article  CAS  Google Scholar 

  46. Coufal O, Sezemský P (2001) J Phys D Appl Phys 34(14):2174

    Article  CAS  Google Scholar 

  47. Wang X, Gao Q, Fu Y, Yang A, Rong M, Wu Y, Niu C, Murphy AB (2016) J Phys D Appl Phys 49(10):105502

    Article  Google Scholar 

  48. Inada Y, Matsuoka S, Kumada A, Ikeda H, Hidaka K (2014) J Phys D Appl Phys 47(17):175201

    Article  Google Scholar 

  49. Kozák T, Bogaerts A (2014) Plasma Sources Sci Technol 23(4):045004

    Article  Google Scholar 

  50. Aerts R, Somers W, Bogaerts A (2015) ChemSusChem 8(4):702–716

    Article  CAS  Google Scholar 

  51. Aerts R, Martens T, Bogaerts A (2012) J Phys Chem C 116(44):23257–23273

    Article  CAS  Google Scholar 

  52. Cenian A, Chernukho A, Borodin V, Śliwiński G (1994) Contrib Plasma Phys 34(1):25–37

    Article  CAS  Google Scholar 

  53. Beuthe TG, Chang JS (1997) Jpn J Appl Phys 36(7S):4997

    Article  CAS  Google Scholar 

  54. Wu Y, Chen Z, Cressault Y, Murphy AB, Guo A, Liu Z, Sun H (2015) J Phys D Appl Phys 48(41):415205

    Article  Google Scholar 

  55. Yang F, Chen Z, Wu Y, Rong M, Guo A, Liu Z, Wang C (2015) Phys Plasma 22(10):103508

    Article  Google Scholar 

  56. Gurvich LV, Veyts IV, Alcock CB (1989) Thermodynamic properties of individual substances. Hemisphere, New York

    Google Scholar 

  57. Capitelli M, Colonna G, D’Angola A (2012) Fundamental aspects of plasma chemical physics. statistical thermodynamics. Springer, New York

    Book  Google Scholar 

  58. Coufal O, Sezemský P, Živný O (2005) J Phys D Appl Phys 38(8):1265

    Article  CAS  Google Scholar 

  59. Coufal O, Živný O (2011) Eur Phys J D 61(1):131–151

    Article  CAS  Google Scholar 

  60. André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (1999) Ann N Y Acad Sci 891(1):81–89

    Article  Google Scholar 

  61. Kee RJ, Rupley FM, Miller JA (1989) Chemkin-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Labs, Livermore

    Google Scholar 

  62. Gordon MH, Kruger CH (1993) Plasma Chem Plasma Process 13(3):365–378

    Article  CAS  Google Scholar 

  63. Janev RK, Reiter D (2002) Forschungszentrum Jülich Zentralbibliothek

  64. Janev RK, Murakami I, Kato T, Wang JG (2001) Cross sections and rate coefficients for electron-impact ionization of hydrocarbon molecules. National Inst for Fusion Sci Toki Gifu (Japan)

  65. Kieffer LJ, Dunn GH (1966) Rev Modern Phys 38(1):1

    Article  CAS  Google Scholar 

  66. Cunningham AJ, Hobson RM (1972) J Phys B Atom Mol Phys 5(12):2320

    Article  CAS  Google Scholar 

  67. Eliasson B, Hirth M, Kogelschatz U (1987) J Phys D Appl Phys 20(11):1421

    Article  CAS  Google Scholar 

  68. Chang JS, Hobson RM, Ichikawa Y, Kaneda T (1983) Atomic and molecular processes in an ionized gas. Tokyo Denki University Press, Tokyo

    Google Scholar 

  69. Woodall J, Agúndez M, Markwick-Kemper AJ, Millar TJ (2007) Astron Astrophys 466(3):1197–1204

    Article  CAS  Google Scholar 

  70. Teulet P, Gonzalez JJ, Mercado-Cabrera A, Cressault Y, Gleizes A (2009) J Phys D Appl Phys 42(17):175201

    Article  Google Scholar 

  71. Chang JS, Masuda S (1988) Pure Appl Chem 60(5):645–650

    Article  CAS  Google Scholar 

  72. Liu DX, Rong MZ, Wang XH, Iza F, Kong MG, Bruggeman P (2010) Plasma Process Polym 7(9–10):846–865

    Article  CAS  Google Scholar 

  73. Matejcik S, Kiendler A, Cicman P, Skalny J, Stampfli P, Illenberger E, Märk TD (1997) Plasma Sources Sci Technol 6(2):140

    Article  CAS  Google Scholar 

  74. Maksimov AI, Polak LS, Sergienko AF, Slovetskii DI (1979) High Energy Chem 13(4):311–316

    Google Scholar 

  75. Ono S, Teii S (1984) J Phys D Appl Phys 17(10):1999

    Article  CAS  Google Scholar 

  76. Dorai R (2002) Modeling of atmospheric pressure plasma processing of gases and surfaces. a Ph.D. thesis, University of Illinois at Urbana-Champaign 265

  77. Gudmundsson JT, Thorsteinsson EG (2007) Plasma Sources Sci Technol 16(2):399

    Article  CAS  Google Scholar 

  78. Kruse T, Roth P (1997) J Phys Chem A 101(11):2138–2146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Basic Research Program of China (973 Program) (2015CB251001), National Natural Science Foundation of China (No. 51521065), China Postdoctoral Science Foundation (2015M572558), the Fundamental Research Funds for the Central Universities, Natural Science Basis Research Plan in Shaanxi Province of China (2016JQ5089), the State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE16307).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohua Wang or Mingzhe Rong.

Additional information

Qingqing Gao and Aijun Yang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Yang, A., Wang, X. et al. Determination of the Dominant Species and Reactions in Non-equilibrium CO2 Thermal Plasmas with a Two-Temperature Chemical Kinetic Model. Plasma Chem Plasma Process 36, 1301–1323 (2016). https://doi.org/10.1007/s11090-016-9719-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9719-0

Keywords

Navigation