Skip to main content
Log in

Temperature and density measurements in a recombining argon plasma with diluent

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Spectroscopic and callorimetric measurements of temperature arid number density have been made using a 50-kW radio-frequency inductively coupled plasma (RFICP) torch operated at atmospheric pressure with maximum temperatures and electron densities near 8,1000 K and 2 x 1021 m3, respectively These measurements enabled the determination o/ the stale o/ equilibrium and of the corresponding applicability of rarious diagnostic techniques in hoth a recombining argon plasma and a recombining plasma with hydrogen or nitrogen. Results indicate that the Pure argon plasma is well described by u partial equilibrium model in which the free and bound-excited electrons are in mutual equilibrium irespective of possible departures from equilibrium with the ground state. The addition of just tenths of a percent of either atomic Hydrogen or nitrogen, however, disturbs this partial equilibrium hr argon plasmas with electron densities roughly less than 1021 m3 such that only diagnostic techniques which are independent o/ partial equilibrium assumptions can be reliably implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Griem,Plasma Spectroscopy. McGraw-Hill, New York (1964).

    Google Scholar 

  2. H. W. Drawin,Z. Phys. 228, 99 (1969).

    Google Scholar 

  3. D. Bourasseau, F. Cabannes, and J. Chapelle,Astron. Astrophys. 9, 339 (1970).

    Google Scholar 

  4. K. P. Nick, J. Richter, and V. Helbig,J. Quant. Spectrosc. Radiat. Transfer 32, 1 (1984).

    Google Scholar 

  5. V. Bakshi and R. J. Kearney,J. Quant. Spectrosc. Radiat. Transfer 41, 369 (1989).

    Google Scholar 

  6. M. W. Blades,Spectrochim. Acta 37B, 869 (1982).

    Google Scholar 

  7. I. J. M. M. Raaijmakers, P. W. J. M. Boumans, B. van der Sijde, and D. C. Schram,Spectrochim Acta 38B, 697 (1983).

    Google Scholar 

  8. R. Hernberg and J. Vattulainen. inProceedings of the 9th International Symposium on Plasma Chemistry (International Union of Pure and Applied Chemistry, Pugnochiuso, Italy, 1989), p. 308.

  9. T. G. Owano, M. H. Gordon, and C. H. Kruger.Phys. Fluids B 2, 3184 (1990).

    Google Scholar 

  10. K. E. Spear,J. Am. Ceram. Soc.72, 171 (1989).

    Google Scholar 

  11. J. C. Angus and C. C. Hayman.Science ( Washington, D.C.) 241, 913 (1988).

    Google Scholar 

  12. C. J. Cremers and R. C. Birkebak,App. Opt. 5, 1057 (1966).

    Google Scholar 

  13. A. T. M. Wilbers, G. M. W. Kroesen, C. J. Timmermans, and D. C. Schram,J. Quant. Spectrosc. Radiat. Transfer 45, 1 (1991).

    Google Scholar 

  14. L. M. Biberman, G. E. Norman, and K. N. Ulyanov.Opt. Spectrosc. 10, 297 (1961).

    Google Scholar 

  15. D. Hofsaess,J. Quant. Spectrosc. Radiat. Transfer 19, 339 (1978).

    Google Scholar 

  16. L. M. Biberman and G. E. Norman,Sov. Phys. Usp. 10, 52 (1967).

    Google Scholar 

  17. D. Hofsaess,At. Data Nucl. Data Tables 24, 285 (1979).

    Google Scholar 

  18. R. Schnapauf,Z. Astrophys. 68, 431 (1968).

    Google Scholar 

  19. R. S. Devoto,Phys. Fluids 16, 616 (1973).

    Google Scholar 

  20. H. R. Griem,Spectral Line Broadening by Plasmas, Academic Press, New York (1974).

    Google Scholar 

  21. W. Demtroder.Laser Spectroscopy, Springer-Verlag, Berlin (1982).

    Google Scholar 

  22. S. R. Drayson,J. Quant. Spectrosc. Radiut. Transfer 16, 611 (1976).

    Google Scholar 

  23. M. Mitchner and C. H. Kruger,Partially Ionized Gases, Wiley, New York (1973).

    Google Scholar 

  24. W. L. Wiese, M. W. Smith, and B. M. Glenon,Atomic Transition Probabilities, U.S. National Bureau of Standards National Standard Reference Series-4 (U.S. Government Printing Office, Washington, DC, 1966), Vol. 1.

    Google Scholar 

  25. M. H. Gordon, Ph.D. Thesis. Stanford University (1992).

  26. C. H. Kruger,Phys. Fluids 13, 1737 (1970).

    Google Scholar 

  27. M. H. Gordon and C. H. Kruger,Phys. Fluids B.5, 1014 (1993).

    Google Scholar 

  28. H. Uchida, K. Tanabe, N. Yukihiro, H. Haraguchi, and K. Fuwa,Spectrochim. Acta 36B, 711 (1981)

    Google Scholar 

  29. S. Nowak, J. A. M. van der Mullen, B. van der Sijde, and D. C. Schram,J. Quant. Spectrosc. Radiat. Transfer 41, 177 (1989).

    Google Scholar 

  30. M. W. Blades and N. Lee,Spectrochim. Acta 39B, 879 (1984).

    Google Scholar 

  31. L. G. Piper, M. A. A. Clyne, and P. B. Monkhouse,Chem. Phys. 51, 107 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, M.H., Kruger, C.H. Temperature and density measurements in a recombining argon plasma with diluent. Plasma Chem Plasma Process 13, 365–378 (1993). https://doi.org/10.1007/BF01465871

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01465871

Key words

Navigation