Skip to main content
Log in

Thermodynamic Properties and Transport Coefficients of CO2–Cu Thermal Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper presents the calculated values of equilibrium compositions, thermodynamic properties and transport coefficients (viscosity, electrical conductivity and thermal conductivity) for CO2–Cu thermal plasmas. With several copper mass proportions, the calculation is performed at temperatures 2000–30,000 K and various pressures 0.1–16 bar. Gibbs free energy minimization is used to determine species compositions and thermodynamic properties and the well-known Chapman–Enskog method is applied to calculating transport properties. Furthermore, great attention is paid to cope with the interactions between all the particles in the determination of collision integrals. The results are illustrated indicating the effect of the copper proportions and pressure on the fundamental properties of CO2–Cu thermal plasmas. It can be found that a small quantity of copper (less than 10 %) can significantly modify the charged species densities and electrical conductivity especially at low temperature. While for other properties, the influences can be noticeable only when the copper proportion is above 10 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Tanaka M, Lowke JJ (2007) Predictions of weld pool profiles using plasma physics. J Phys D Appl Phys 40:R1–R23

    Article  CAS  Google Scholar 

  2. Franck CM, Seeger M (2006) Application of high current and current zero simulations of high-voltage circuit breakers. Contrib Plasma Phys 46(10):787–797

    Article  Google Scholar 

  3. Swierczynski B, Gonzalez JJ, Teulet P, Freton P, Gleizes A (2004) Advances in low-voltage circuit breaker modelling. J Phys D Appl Phys 37:595–609

    Article  CAS  Google Scholar 

  4. Nemchinsky VA, Severance R (2006) What we know and what we do not know about plasma arc cutting. J Phys D Appl Phys 39:R423–R438

    Article  CAS  Google Scholar 

  5. Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37:R86–R108

    Article  CAS  Google Scholar 

  6. Lister GG, Lawler JE, Lapatovich WP, Godyak VA (2004) The physics of discharge lamps. Rev Mod Phys 76:541–598

    Article  CAS  Google Scholar 

  7. Wilhelm G, Gött G, Schöpp H, Uhrlandt D (2010) Study of the welding gas influence on a controlled short-arc GMAW process by optical emission spectroscopy. J Phys D Appl Phys 43(43):434004

    Article  Google Scholar 

  8. Schnick M, Füssel U, Hertel M, Spille-Kohoff A, Murphy AB (2010) Metal vapour causes a central minimum in arc temperature in gas–metal arc welding through increased radiative emission. J Phys D Appl Phys 43(2):022001

    Article  Google Scholar 

  9. Liau VK, Lee BY, Song KD, Park KY (2006) The influence of contacts erosion on the SF6 arc. J Phys D Appl Phys 39(10):2114

    Article  CAS  Google Scholar 

  10. Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D Appl Phys 43(43):434001

    Article  Google Scholar 

  11. Andanson P, Cheminat B (1979) Contamination d’un plasma d’argon par des vapeurs anodiques de cuivre. Rev Phys Appl 14(8):775–782

    Article  CAS  Google Scholar 

  12. Cheminat B, Gadaud R, Andanson P (1987) Vaporisation d’une anode en argent dans la plasma d’un arc électrique. J Phys D Appl Phys 20(4):444–452

    Article  CAS  Google Scholar 

  13. Adachi K, Inaba T, Amakawa T (1991) Voltage of wall-stabilized argon arc injected with iron powder. In: Proceeding 10th international symposium plasma chemistry, Bochum, Germany, 4–9 Aug 1991, 1, pp 3–10

  14. Rong M, Ma Q, Wu Y, Xu T, Murphy AB (2009) The influence of electrode erosion on the air arc in a low-voltage circuit breaker. J Appl Phys 106(2):023308

    Article  Google Scholar 

  15. Lee A, Herberlein JVR, Meyer TN (1985) High-current arc gap with ablative wall: dielectric recovery and wall-contact interaction. IEEE Trans Compon Hybrids Manuf Technol 8(1):129–134

    Article  Google Scholar 

  16. Yang F, Rong M, Wu Y, Murphy AB, Pei J, Wang L, Liu Z, Liu Y (2010) Numerical analysis of the influence of splitter-plate erosion on an air arc in the quenching chamber of a low-voltage circuit breaker. J Phys D Appl Phys 43(43):434011

    Article  Google Scholar 

  17. Abdelhakim H, Dinguirard JP, Vacquie S (1980) The influence of copper vapour on the transport coefficients in a nitrogen arc plasma. J Phys D Appl Phys 13(8):1427

    Article  CAS  Google Scholar 

  18. Dassanayake MS, Etemadi K (1989) Thermodynamic and transport properties of an aluminum–nitrogen plasma mixture. J Appl Phys 66(11):5240–5244

    Article  CAS  Google Scholar 

  19. Tanaka Y, Yokomizu Y, Kato M, Matsumura T, Shimizu K, Takayama S, Okada T (1997) Electrical and thermal conductivities and enthalpy of air plasma contaminated with Fe, Ca, Mg or H2O vapour. In: P Fauchais (ed) The 4th international thermal plasma processes conference, Athens, Greece, 15–18 July 1996, Begell House, New York, 1997, pp 587–594

  20. Cressault Y, Gleizes A, Riquel G (2012) Properties of air–aluminium thermal plasmas. J Phys D Appl Phys 45:265202

    Article  Google Scholar 

  21. Cressault Y, Hannachi R, Teulet Ph, Gleizes A, Gonnet J-P, Battandier J-Y (2008) Influence of metallic vapours on theproperties of air thermal plasmas. Plasma Sources Sci Technol 17:035016

    Article  Google Scholar 

  22. Cressault Y, Gleizes A (2010) Calculation of diffusion coefficients in air–metal thermal plasmas. J Phys D Appl Phys 43:434006

    Article  Google Scholar 

  23. Chervy B, Gleizes A, Razafinimanana M (1994) Thermodynamic properties and transport coefficients in SF6–Cu mixtures at temperatures of 300–30 000 K and pressures of 0.1–1MPa. J Phys D Appl Phys 27:1193

    Article  CAS  Google Scholar 

  24. Krenek P (1992) Thermophysical properties of the reacting mixture SF6 and Cu in the range 3000 to 50 000 K and 0.1 to 2 MPa. Acta Technol CSAV 37:399–410

    CAS  Google Scholar 

  25. Wang XH, Zhong LL, Cressault Y, Gleizes A, Rong MZ (2014) Thermophysical properties of SF6–Cu mixtures at temperatures of 300–30,000 K and pressures of 0.01–1.0 MPa: part 2. Collision integrals and transport coefficients. J Phys D Appl Phys 47:495201

    Article  Google Scholar 

  26. Rong MZ, Zhong LL, Cressault Y, Wang XH, Chen F, Zheng H (2014) Thermophysical properties of SF6–Cu mixtures at temperatures of 300–30 000 K and pressures of 0.01–1.0 MPa: part 1. Equilibrium compositions and thermodynamic properties considering condensed phases. J Phys D Appl Phys 47:495202

    Article  Google Scholar 

  27. Zhong L, Wang X, Rong M, Wu Y, Murphy AB (2014) Calculation of combined diffusion coefficients in SF6–Cu mixtures. Phys Plasmas 21:103506

    Article  Google Scholar 

  28. Cressault Y, Gleizes A (2004) Thermodynamic properties and transport coefficients in Ar–H2–Cu plasmas. J Phys D Appl Phys 37:560–572

    Article  CAS  Google Scholar 

  29. Essoltani A, Proulx P, Boulos MI, Gleizes A (1994) Effect of the presence of iron vapors on the volumetric emission of Ar/Fe and Ar/Fe/H2 plasmas. Plasma Chem Plasma Process 14:301–315

    Article  CAS  Google Scholar 

  30. Cressault Y, Murphy AB, Teulet Ph, Gleizes A, Schnick M (2013) Thermal plasma properties for Ar–Cu, Ar–Fe and Ar–Al mixtures used in welding plasmas processes: II. Transport coefficients at atmospheric pressure. J Phys D Appl Phys 46:415207

    Article  Google Scholar 

  31. Cressault Y, Gleizes A (2013) Thermal plasma properties for Ar–Al, Ar–Fe and Ar–Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure. J Phys D Appl Phys 46:415206

    Article  Google Scholar 

  32. Murphy AB, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke JJ (2009) Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. J Phys D Appl Phys 42:194006

    Article  Google Scholar 

  33. Tashiro S, Tanaka M, Nakata K, Iwao T, Koshiishi F, Suzuki K, Yamazaki K (2007) Plasma properties of helium gas tungsten arcwith metal vapour. Sci Technol Weld Join 12:202–207

    Article  CAS  Google Scholar 

  34. Lu S, Fujii H, Nogi K (2008) Marangoni convection and weld shape variations in He–CO2 shielded gas tungsten arc welding on SUS304 stainless steel. J Mater Sci 43:4583–4591

    Article  CAS  Google Scholar 

  35. Tanaka M, Tashiro S, Ushio M, Mita T, Murphy AB, Lowke JJ (2006) CO2-shielded arc as a high-intensity heat source. Vacuum 80:1195–1198

    Article  CAS  Google Scholar 

  36. Hoffmann T, Baldea G, Riedel U (2009) Thermodynamics and transport properties of metal/inert-gas mixtures used for arc welding. Proc Combust Inst 32:3207–3214

    Article  CAS  Google Scholar 

  37. Murphy AB (2013) Influence of metal vapour on arc temperatures in gas–metal arc welding: convection versus radiation. J Phys D Appl Phys 46:224004

    Article  Google Scholar 

  38. Tanaka M, Yamamoto Y, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy AB, Lowke JJ (2010) Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding. J Phys D Appl Phys 43:434009

    Article  Google Scholar 

  39. Stoller PC, Seeger M, Iordanidis AA, Naidis GV (2013) CO2 as an Arc Interruption Medium in Gas Circuit Breakers. IEEE Trans Plasma Sci 41:2359–2369

    Article  CAS  Google Scholar 

  40. Uchii T, Shinkai T, Suzuki K (2002) Thermal interruption capability of carbon dioxide in a puffer-type circuit breaker utilizing polymer ablation. Proc IEEE/PES Trans Distrib Conf Exhib Asia Pacific 3:1750–1754

    Article  Google Scholar 

  41. Wada J, Ueta G, Okabe S (2013) Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms-breakdown characteristics in the presence of bias voltages under non-uniform electric field. IEEE Trans Dielectr Electr Insul 20:112–121

    Article  CAS  Google Scholar 

  42. Zhong LL, Yang AJ, Wang XH, Liu DX, Wu Y, Rong MZ (2014) Dielectric breakdown properties of hot SF6-CO2 mixtures at temperatures of 300–3500 K and pressures of 0.01–1.0MPa. Phys Plasmas 21:053506

    Article  Google Scholar 

  43. Yang A, Liu Y, Sun B, Wang X, Cressault Y, Zhong L, Rong M, Wu Y, Niu C (2015) Thermodynamic properties and transport coefficients of high-temperature CO2 thermal plasmas mixed with C2F4. J Phys D Appl Phys 48:495202

    Article  Google Scholar 

  44. LTA 72D1 CO2 high voltage circuit breaker. http://www.ABB.com/highvoltage

  45. Murphy AB (2001) Thermal plasmas in gas mixtures. J Phys D Appl Phys 34:R151

    Article  CAS  Google Scholar 

  46. Gleizes A, Gonzalez JJ, Freton P (2005) Thermal plasma modelling. J Phys D Appl Phys 38:R153

    Article  CAS  Google Scholar 

  47. Wang X, Zhong L, Yan J, Yang A, Han G, Han G, Wu Y, Rong M (2015) Investigation of dielectric properties of cold C3F8 mixtures and hot C3F8 gas as Substitutes for SF6. Eur Phys J D 69(10):1–7

    Article  Google Scholar 

  48. Chase MW, Davies CA Jr (1998) NIST–JANAF thermochemical tables, 4th edn. American Institute of Physics for the National Institute of Standards and Technology, New York

  49. Burcat A, Ruscic B (2005) Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables (Argonne National Laboratory), Report number ANL-05/20. http://www.chem.leeds.ac.uk/combustion/combustion.html

  50. Monchick L (1959) Collision integrals for the exponential repulsive potential. Phys Fluids 2:695–700

    Article  CAS  Google Scholar 

  51. Smith FJ, Munn RJ (1964) Automatic calculation of the transport collision integrals with tables for the morse potential. J Chem Phys 41:3560–3568

    Article  CAS  Google Scholar 

  52. Neufeld PD, Janzen AR, Aziz RA (1972) Empirical equations to calculate 16 of the transport collision integrals (l, s)* for the Lennard Jones (12–6) potential. J Chem Phys 57:1100–1102

    Article  CAS  Google Scholar 

  53. Rainwater JC, Holland PM, Biolsi L (1982) Binary collision dynamics and numerical evaluation of dilute gas transport properties for potentials with multiple extrema. J Chem Phys 77:434–437

    Article  CAS  Google Scholar 

  54. Laricchiuta A, Colonna G, Bruno D, Celiberto R, Gorse C, Pirani F, Capitelli M (2007) Classical transport collision integrals for a Lennard-Jones like phenomenological model potential. Chem Phys Lett 445:133–139

    Article  CAS  Google Scholar 

  55. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 16a, June 2015, Editor: Russell D. Johnson III. http://cccbdb.nist.gov/

  56. André P, Bussiere W, Rochette D (2007) Transport coefficients of Ag–SiO2 plasmas. Plasma Chem Plasma Process 27:381–403

    Article  Google Scholar 

  57. Wang WZ, Murphy AB, Yan JD, Rong AZ, Spencer JW, Fang MTC (2012) Thermophysical properties of high-temperature reacting mixtures of carbon and water in the range 400–30,000 K and 0.1–10 atm. Part 1: equilibrium composition and thermodynamic properties. Plasma Chem Plasma Process 32:75–96

    Article  Google Scholar 

  58. Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon–nitrogen, and argon–oxygen plasmas. Plasma Chem Plasma Process 14:451–490

    Article  CAS  Google Scholar 

  59. Copeland FBM, Crothers DSF (1997) Cross sections for resonant charge transfer between atoms and their positive ions. At Data Nucl Data Tables 65:273–288

    Article  CAS  Google Scholar 

  60. Yevseyev AV, Radtsig AA, Smirnov BM (1982) The asymptotic theory of resonance charge exchange between diatomics. J Phys B At Mol Phys 15:4437–4452

    Article  CAS  Google Scholar 

  61. Abdelhakim H, Dinguirard JP, Vacquie S (1980) The influence of copper vapour on the transport coefficients in a nitrogen arc plasma. J Phys D Appl Phys 13:1427

    Article  CAS  Google Scholar 

  62. Aubreton A, Elchinger MF (2003) Transport properties in non-equilibrium argon, copper and argon–copper thermal plasmas. J Phys D Appl Phys 36:1798

    Article  CAS  Google Scholar 

  63. Bouillon Combadiere S (1995) Etude d’un plasma d’air ensemencé de vapeurs de cuivre: propriétés de transport, diagnostiques et interaction avec des matériaux. Doctoral dissertation

  64. Rapp D, Francis WE (1962) Charge exchange between gaseous ions and atoms. J Chem Phys 37:2631–2645

    Article  CAS  Google Scholar 

  65. Rutherford JA, Vroom DA (1974) The reaction of atomic oxygen with several atmospheric ions. J Chem Phys 61:2514–2519

    Article  CAS  Google Scholar 

  66. Zatsarinny O, Bartschat K (2010) Electron collisions with copper atoms: elastic scattering and electron-impact excitation of the (3 d 10 4 s) 2 S → (3 d 10 4 p) 2 P resonance transition. Phys Rev A 82:062703

    Article  Google Scholar 

  67. Ghorui S, Das AK (2013) Collision integrals for charged–charged interaction in two-temperature non-equilibrium plasma. Phys Plasmas 20:093504

    Article  Google Scholar 

  68. Murphy AB (2000) Transport coefficients of hydrogen and argon–hydrogen plasmas. Plasma Chem Plasma Process 20:279–297

    Article  CAS  Google Scholar 

  69. Devoto RS (1967) Simplified expressions for the transport properties of ionized monatomic gases. Phys Fluids 10:2105–2112

    Article  CAS  Google Scholar 

  70. Devoto RS (1967) Third approximation to the viscosity of multicomponent mixtures. Phys Fluids 10:2704–2706

    Article  CAS  Google Scholar 

  71. Butler JN, Brokaw RS (1957) Thermal conductivity of gas mixtures in chemical equilibrium. J Chem Phys 26:1636–1643

    Article  CAS  Google Scholar 

  72. Meador WE, Stanton LD (1965) Electrical and thermal properties of plasmas. Phys Fluids 8:1694–1703

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Basic Research Program of China (973 Program) (2015CB251002), National Natural Science Foundation of China (No. 51521065 and 51221005), China Postdoctoral Science Foundation (2015M572558) and the State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE16307).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohua Wang or Mingzhe Rong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Liu, Y., Zhong, L. et al. Thermodynamic Properties and Transport Coefficients of CO2–Cu Thermal Plasmas. Plasma Chem Plasma Process 36, 1141–1160 (2016). https://doi.org/10.1007/s11090-016-9709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9709-2

Keywords

Navigation