Skip to main content
Log in

The formation of aluminum oxide scales on high-temperature alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper is a brief review of the extensive literature relating to the formation of protective α—Al2O3 scales on alloys at high temperature. Emphasis is placed on the proposed mechanisms of scale growth based on observations of scale morphologies and microstructures, inert-marker experiments and the distribution of oxygen isotope tracers within thermally-grown oxides. Attention is also given to the determination of ionic-transport mechanisms by electrochemical methods and to the effects of reactive elements such as yttrium in modifying ionic-diffusion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. C. Wood and F. H. Stott, The development and growth of protectiveα-Al2O3 scales on alloys,High Temp. Corros. NACE 6, 227–250 (1983).

    Google Scholar 

  2. F. H. Stott and G. C. Wood, Growth and adhesion of oxide scales on Al2O3-forming alloys and coatings,Mater. Sci. Eng. 87, 267–214 (1987).

    Google Scholar 

  3. H. Hindham and D. P. Whittle, Microstructure, adhesion and growth kinetics of protective scales on metals and alloys,Oxid. Met. 18(5/6), 245–284 (1982).

    Google Scholar 

  4. N. R. Linblad, A review of the behavior of aluminide coated superalloys,Oxid. Met. 1(1), 143–170 (1969).

    Google Scholar 

  5. G. W. Goward, Recent developments in high temperature coatings for gas turbine airfoils,High Temp. Corros. NACE 6, 553–560 (1983).

    Google Scholar 

  6. M. A. Hocking, V. Vasantasree, and P. S. Sidky, Metallic and ceramic coatings, Longman Scientific and Technical (1989).

  7. W. E. Boggs, The oxidation of iron-aluminum alloys from 450 to 950°C,J. Electrochem. Soc. 118(6), 906–913 (1971).

    Google Scholar 

  8. P. Tomaszewick and G. R. Wallwork, Iron-Aluminium Alloys: A review of their oxidation behaviour,Rev. High Temp. Mater 4(1), 75–105 (1978).

    Google Scholar 

  9. G. C. Wood, High-temperature oxidation of alloys,Oxid. Met. 2(1), 11–57 (1970).

    Google Scholar 

  10. W. C. Hagel, The oxidation of ironnickel-, and cobalt-base alloys containing aluminum,Corrosion 21(10) 316–326 (1965).

    Google Scholar 

  11. G. C. Wood and F. H. Stott, The influence of aluminum additions on the oxidation of Co-Cr alloys at 1000 and 1200°C,Oxid. Met. 3(4), 365–398 (1971).

    Google Scholar 

  12. F. H. Stott, G. C. Wood, and M. G. Hobby, Comparison of the oxidation behavior of iron-chromium-aluminum, nickel-chromium-aluminum, and cobalt-chromium-aluminum alloys,Oxid. Met. 3(2), 103–113 (1971).

    Google Scholar 

  13. G. Ben Abderrazik, A. Boumaza, G. Moulin, A M. Huntz and R. Mervel, High temperature oxidation of superalloys protected by M-Cr-Al-Y overlay coatings, 8th European Congress on Corrosion, Vol. 1, Paper 70 (1985).

  14. W. H. Gitzen, Alumina as ceramic material,Am. Ceram. Soc. (1970).

  15. G. C. Wood and B. Chattopadhay, Transient oxidation of Ni-base alloys,Corros. Sci. 10, 471–480 (1970).

    Google Scholar 

  16. G. C. Wood and B. Chattopadhay, Transient oxidation of alloys,Oxid. Met. 2, 373–399 (1970).

    Google Scholar 

  17. R. E. Grace and A. E. Seybolt, Selective oxidation of aluminum from an aluminum-iron alloy,J. Electrochem. Soc. 105, 582–585 (1958).

    Google Scholar 

  18. T. Nakagama and K. Kaneko, Selective oxide films on 5% aluminum-iron alloy in a low oxygen-potential atmosphere,Corrosion 26(7), 187–188 (1970).

    Google Scholar 

  19. W. C. Hagel, The oxidation of iron, nickel and cobalt-based alloys containing aluminum,Corrosion 21(10), 316–326 (1965).

    Google Scholar 

  20. I. Kvernes, M. Oliveira, and P. Kofstad, High temperature oxidation of Fe-13Cr-XAl alloys in air/H2O vapor mixtures,Corros. Sci. 17, 237–252 (1977).

    Google Scholar 

  21. B. H. Kear, F. S. Pettit, D. E. Fornwalt, and L. P. Lemaire, On the transient oxidation of a Ni-15Cr-6Al Alloy,Oxid. Met. 3, 557–569 (1971).

    Google Scholar 

  22. J. L. Smialek and R. Gibala, Structure of transient oxides formed on Ni-Cr-Al alloys,Met. Trans. 14A(10), 2143–2161 (1983).

    Google Scholar 

  23. C. J. P. Steiner, D. P. H. Hasselman, and R. M. Spriggs, Kinetics of theγ-α alumina phase transformation,J. Am. Ceram. Soc. 54(8), 412–413 (1971).

    Google Scholar 

  24. P. A. van Manen, E. W. A. Young, D. Schalkoard, C. J. Van der Wekken, and J. H. W. de Wit, The influence of Y on structure and growth mechanism of alumina scales,Surf. Interface Analy. 12, 391–396 (1988).

    Google Scholar 

  25. P. T. Moseley, K. R. Hyde, B. A. Bellamy, and G. Tappin, The microstructure of the scale formed during the high temperature oxidation of a Fe-Cr alloy steel,Corros. Sci. 24(6), 547–565 (1984).

    Google Scholar 

  26. G. C. Rybicki and J. L. Smialek, Effect of theθ-α-Al2O3 transformation on the oxidation behavior ofβ-NiAl + Zr,Oxid. Met. 31(3/4), 275–304 (1989).

    Google Scholar 

  27. J. L. Smialek, J. Doychak, and D. J. Gaydosh, Oxidation behavior of Fe-Al + Zr, Hf, B, Workshop on Oxidation of High Temperature Intermetallics, TMS AME (1988).

  28. J. Peters and H. J. Grabke, Formation of alumina layers on iron-base alloys,Werkst. Korros. 35, 385–394 (1984).

    Google Scholar 

  29. J. K. Doychak, J. L. Smialek, and T. E. Mitchell, Formation of single crystal Al2O3 scales onβ-NiAl,Proc. Int. Cong. Metall. Corros. 1, 35–40 (1984).

    Google Scholar 

  30. T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton, Al2O3 scales on ODS alloys, Proc. JIMIS-3: High Temp. Corros. Trans. of the Japan Inst. of Metals, Suppl., 199–206 (1983).

    Google Scholar 

  31. E. J. Felton and F. S. Pettit, Development, growth and adhesion of Al2O3 on platinumaluminum alloys,Oxid. Met. 10(3), 184–223 (1976).

    Google Scholar 

  32. M. J. Graham, J. I. Eldridge, D. F. Mitchell, and R. J. Hussey, Anion transport in growing Cr2O3 and Al2O3 scales,Mater. Sci. Forum 43, 207–242 (1989).

    Google Scholar 

  33. F. A. Kroeger, Defects and transport in SiO2, Al2O3, Cr2O3,High Temp. Corros. NACE 6, 89–100 (1983).

    Google Scholar 

  34. J. D. Crawley, J. W. Halloran, and A. R. Cooper, Oxygen diffusion in alpha alumina, NASA Tech. Memo. 83622 E-1862, 356 (1984).

  35. D. J. Reed and B. J. Weunsch, Ion probe measurement of oxygen self-diffusion in single crystal aluminum oxide,J. Am. Ceram. Soc. 63(1–2), 88–92 (1980).

    Google Scholar 

  36. Y. Oishi, K. Ando, and Y. Kubota, Self-diffusion of oxygen in single crystal alumina,J. Chem. Phys. 73(3), 1410–1412 (1980).

    Google Scholar 

  37. K. P. R. Reddy, Oxygen diffusion in close packed oxides,Diss. Abs. Int. B. 40(5), 2314 (1979).

    Google Scholar 

  38. Y. Oishi and W. D. Kingery, Self-diffusion of oxygen in single crystal and polycrystalline aluminum oxide,J. Chem. Phys. 33, 480–486 (1960).

    Google Scholar 

  39. A. E. Paladino and R. L. Coble, Effect of grain boundaries on diffusion-controlled processes in aluminum oxide,J. Am. Ceram. Soc. 46, 133–136 (1963).

    Google Scholar 

  40. R. E. Mistler and R. L. Coble, Rate-determining species in diffusion-controlled processes in alumina,J. Am. Ceram. Soc. 54(1), 60–61 (1971).

    Google Scholar 

  41. R. E. Mistler and R. L. Coble, Grain-boundary diffusion and boundary widths in metals and ceramics,J. Appl. Phys. 45, 1507–1509 (1974).

    Google Scholar 

  42. A. E. Paladino and W. D. Kingery, Aluminum-ion diffusion in aluminum oxide,J. Chem. Phys. 37, 957–962 (1962).

    Google Scholar 

  43. R. J. Brook, J. Yee, and F. A. Kroger, Electrochemical cells and electrical conduction of pure and doped aluminum oxide,J. Am. Ceram. Soc. 54(9), 444–451 (1971).

    Google Scholar 

  44. J. Pappis and W. D. Kingery, Electrical properties of single crystal and polycrystalline alumina at high temperatures,J. Am. Ceram. Soc. 44, 459–464 (1961).

    Google Scholar 

  45. G. J. Dienes, D. O. Welch, C. R. Fisher, R. D. Hatcher, O. Lazareth, and M. Samburg, Shell-model calculation of some point-defect properties inα-aluminum oxide,Phys. Rev. B 11(8), 3060–3070 (1975).

    Google Scholar 

  46. C. R. A. Catlow, R. James, W. C. Mackrodt, and R. F. Stewart, Defect energies inαaluminum oxide and rutile titanium oxide,Phys. Rev. B Condens. Matt. 25(2), 1006–1026 (1982).

    Google Scholar 

  47. K. P. R. Reddy and A. R. Cooper, Oxygen diffusion in sapphire,J. Am. Ceram. Soc. 65(12), 634–638 (1982).

    Google Scholar 

  48. H. A. Wang and F. A. Kroeger, Chemical diffusion in polycrystalline aluminum oxide (Al2O3),J. Am. Ceram. Soc. 63(11–12), 613–619 (1980).

    Google Scholar 

  49. P. A. Lessing and R. S. Gordon, Creep of polycrystalline alumina, pure and doped with transition metal impurities,J. Mater Sci. 12(11), 2291–2302 (1977).

    Google Scholar 

  50. W. R. Rao and I. B. Cutler, Effect of iron oxide in the sintering kinetics of aluminum (111) oxide,J. Am. Ceram. Soc. 56(71), 588–593 (1973).

    Google Scholar 

  51. I. D. Hou, S. K. Tiku, H. A. Wang, and F. A. Kroeger, Conductiviy and creep in acceptor dominated polycrystalline alumina,J. Mater. Sci. 14(8), 1877–1889 (1979).

    Google Scholar 

  52. M. M. El-Aiat and F. A. Kroeger, Determination of the parameters of native disorders inα-alumina,J. Am. Ceram. Soc. 65(3), 162–166 (1982).

    Google Scholar 

  53. M. M. El-Aiat and F. A. Kroeger, The d.c. conductivity ofα-aluminum oxide doped with vanadium and hydrogen, Proc. Symp.—Tribute to Carl Wagner, Chem. Metall. (1981), pp. 483–492.

  54. M. M. El-Aiat and F. A. Kroeger, Hydrogen donors inα-aluminum oxide,J. Appl. Phys. 53(5), 3658–3667 (1982).

    Google Scholar 

  55. Y. Oishi, K. Ando, N. Suga, and W. D. Kingery, Effect of surface condition on oxygen self-diffusion coefficients for single-crystal alumina,J. Am. Ceram. Soc. 66(8), C130–131 (1983).

    Google Scholar 

  56. Y. Oishi and K. Ando, Oxygen diffusion in magnesia and alumina,Adv. Ceram. 10, 374–393 (1984).

    Google Scholar 

  57. B. J. Pletka, T. E. Mitchell, and A. H. Heuer, Solid solution hardening of sapphire (α-Al2O3),Phys. Stat. Sol. A 39(1), 307–311 (1977).

    Google Scholar 

  58. S. K. Mohapatra and F. A. Kroeger, The dominant type of atomic disorder inα-Al2O3,J. Am. Ceram. Soc. 61(3–4), 106–109 (1978).

    Google Scholar 

  59. S. I. Warshaw and F. H. Norton, Deformation behavior of polycrystalline aluminum oxide,J. Am. Ceram. Soc. 45, 479–486 (1962).

    Google Scholar 

  60. R. L. Coble and Y. M. Guerard, Creep of polycrystalline aluminum oxide,J. Am. Ceram. Soc. 46, 353–354 (1963).

    Google Scholar 

  61. E. M. Passmore and T. Vasilos, Creep of dense, pure, fine-grained aluminum oxide,J. Am. Ceram. Soc. 49, 166–168 (1966).

    Google Scholar 

  62. K. N. Lee and W. L. Worrell, The oxidation of iridium-aluminum and iridium-hafnium intermetallics at temperatures above 1550°C,Oxid. Met. 32(5/6), 357–369 (1989).

    Google Scholar 

  63. J. D. Kuenzly and D. L. Douglass, The oxidation mechanism of Ni3Al containing yttrium,Oxid. Met. 8(3), 139–177 (1974).

    Google Scholar 

  64. A. Kumar, M. Nasrallah and D. L. Douglass, The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys,Oxid. Met. 8(4), 227–263 (1974).

    Google Scholar 

  65. A. Atkinson, Lattice, line defect and grain boundary transport in oxide scales,Oxid. Met. 23(5/6), 261–266 (1985).

    Google Scholar 

  66. A. Atkinson, Conditions for the formation of new oxide within oxide films growing on metals,Corros. Sci. 22, 347–357 (1982).

    Google Scholar 

  67. S. Mrowec, Transport of gaseous species in growing oxide scales,Oxid. Met. 23(5/6), 266–270 (1985).

    Google Scholar 

  68. F. H. Stott, G. C. Wood, M. Hirbod, and F. A. Golightly, The growth and microstructure ofα-alumina on high-temperature iron-chromium base alloys,Proc. Inst. Met. Conf. Environ. Degrad. High Temp. Mater. 2(13), 1–7 (1980).

    Google Scholar 

  69. F. A. Golightly, F. H. Stott, and G. C. Wood, The relationship between oxide grain morphology and growth mechanisms for Fe-Cr-Al and Fe-Cr-Al-Y alloys,J. Electrochem. Soc. 126(6), 1035–1042 (1979).

    Google Scholar 

  70. J. L. Smialek, Oxide morphology and spalling model for NiAl,Metall. Trans. 9A, 309–320 (1978).

    Google Scholar 

  71. J. L. Smialek, The relationship between oxide grain morphology and growth mechanisms for Fe-Cr-Al and Fe-Cr-Al-Y alloys,J. Electrochem. Soc. 126(12), 2275–2276 (1979).

    Google Scholar 

  72. H. M. Hindham and W. W. Smeltzer, Growth and Microstructure ofα-Al2O3 onβ-NiAl,J. Electrochem. Soc. 127(7) 1630–1635 (1980).

    Google Scholar 

  73. F. A. Golightly, F. H. Stott, and G. C. Wood, The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy,Oxid. Met. 10(3), 163–187 (1976).

    Google Scholar 

  74. F. A. Golightly, G. C. Wood, and F. H. Stott, The early stages of development ofα-Al2O3 scales on Fe-Cr-Al and Fe-Cr-Al-Y alloys at high temperature,Oxid. Met. 14(3), 217–234 (1980).

    Google Scholar 

  75. F. H. Stott, G. C. Wood, and F. A. Golightly, The isothermal oxidation behaviour of Fe-Cr-Al and Fe-Cr-Al-Y alloys at 1200°C,Corros. Sci. 18(11), 869–887 (1979).

    Google Scholar 

  76. I. M. Allam, D. P. Whittle, and J. Stringer, The oxidation behavior of Co-Cr-Al systems containing active element additions,Oxid. Met. 12(1), 35–66 (1978).

    Google Scholar 

  77. D. P. Whittle and H. M. Hindham, Microstructure and growth of protective Cr2O3 and Al2O3 scales at high temperature, Proc. Conf. on Corrosion-Erosion-Wear of Materials in Emerging Energy Systems, NACE, pp. 54–99 (1982).

  78. J. L. Smialek and R. Gibala, Diffusion processes in Al2O3 scales: Void growth, grain growth and scale growth,High Temperature Corrosion NACE 6, 274–283 (1983).

    Google Scholar 

  79. D. J. Barber, Elecron microscopy and diffraction by aluminum oxide whiskers,Phil. Mag. 10(103), 75–94 (1964).

    Google Scholar 

  80. J. G. Fountain, F. A. Golightly, F. H. Stott, and G. C. Wood, The influence of platinum on the maintenance ofα-Al2O3 as a protective scale,Oxid. Met. 10(5), 341–345 (1976).

    Google Scholar 

  81. J. K. Tien and F. S. Pettit, Mechanism of oxide adherence on Fe-25Cr-4Al(Y or Sc) alloys,Metall. Trans. 3, 1587–1599 (1972).

    Google Scholar 

  82. R. L. Tallman and E. A. Gulbransen, Crystal morphology and mechanisms of growth ofα-Fe2O3 whiskers on iron,J. Electrochem. Soc. 114(12), 1227–1230 (1967).

    Google Scholar 

  83. H. Fischmeister, Mechanism and kinetic effects of particulate oxide growth. I. Whiskers,Colloq. Intern. Centre Natl. Tech. Sci. 112, 211–215 (1963).

    Google Scholar 

  84. J. A. Sartell, R. J. Stokes, S. H. Bendel, T. L. Johnson and C. H. Li, The role of oxide plasticity on the oxidation mechanism of pure copper,Trans. Am. Inst. Min. Metall. Engr. 215, 420–424 (1959).

    Google Scholar 

  85. J. L. Smialek, J. Doychak, and D. J. Gaydosh, Oxidation behavior of FeAl + Hf, Zr, B,Oxid. Met. 34, 259–275 (1990).

    Google Scholar 

  86. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D. P. Leta, The influence of yttrium on oxide scale growth and adherence,Oxid. Met. 29(5/6), 445–472 (1988).

    Google Scholar 

  87. H. M. Hindham and W. W. Smeltzer, Application of Auger electron spectroscopy and inert metal marker techniques to determine metal and oxygen transport in oxide films on metals,Oxid. Met. 14(4), 337–349 (1980).

    Google Scholar 

  88. J. Jedlinski and S. Mrowec, The influence of implanted yttrium on the oxidation behavior ofβ-NiAl,Mater. Sci. Eng. 87, 281–287 (1987).

    Google Scholar 

  89. E. W. A. Young, H. E. Bishop, and J. H. W. Wit, On the use of markers and tracers to establish the growth mechanism of alumina scales during high-temperature oxidation,Surf. Interface Anal. 9, 163–168 (1986).

    Google Scholar 

  90. E. W. A. Young and J. H. W. deWit, The use of a O18 tracer and Rutherford back scattering spectrometry to study the oxidation mechanism of NiAl,Solid State Ionics 16, 39–46 (1985).

    Google Scholar 

  91. S. N. Basu and J. W. Halloran, Tracer isotope distribution in growing oxide scales,Oxid. Met. 27(3/4), 143–155 (1987).

    Google Scholar 

  92. S. N. Basu, Analysis techniques for tracer studies of oxidation, NASA Contractor Report 174796(1984).

  93. K. P. R. Reddy, J. L. Smialek, and A. R. Cooper, O18 tracer studies of Al2O3 scale formation on Ni-Cr-Al alloys,Oxid. Met. 17(5/6), 429–449 (1982).

    Google Scholar 

  94. E. W. A. Young and J. H. W. deWit, An O18 tracer study on the growth mechanism of alumina scales on NiAl and Ni-Al-Y alloys,Oxid. Met. 26(5/6), 351–361 (1986).

    Google Scholar 

  95. G. Ben Abderrazik, A. Moulin, A. M. Huntz, E. W. A. Young, and J. H. W. deWit, Growth mechanism of Al2O3 scales developed on Fe-Cr-Al alloys,Solid State Ionics 22, 285–294 (1987).

    Google Scholar 

  96. A. M. Huntz, G. Ben Abderrazik, G. Moulin, E. W. A. Young, and J. H. W. deWit, Yttrium influence on the alumina growth mechanism on an FeCr23Al5 alloy,Appl. Surf. Sci. 28, 345–366 (1987).

    Google Scholar 

  97. G. Moulin, A. M. Huntz, J. Rousselet, and G. Ben Abderrazik, Influence of impurities (such as carbon ...) and defects related to stresses on high-temperature oxidation resistance of Fe-Cr-Al and Ni-Cr-Fe alloys,Proc. Int. Cong. Metall. Corros. 1, 41–46 (1984).

    Google Scholar 

  98. W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beske, Differences in growth mechanisms of oxide scales formed on ODS and conventional wrought alloys,Oxid. Met. 32(1/2), 67–88 (1989).

    Google Scholar 

  99. W. J. Quadakkers, W. Speier, H. Holzbrecher, and H. Nickel, SIMS investigations of the transport phenomena in chromia and alumina scales on ODS alloys, Proc. Conf. Microscopy of Oxidation, Cambridge, U.K., Mar. 1990, pp. 149–160 (1991).

  100. R. Prescott, D. F. Mitchell, G. I. Sproule, R. J. Hussey, and M. J. Graham, Hightemperature oxidation of iron-aluminum alloys, Proc. Int. Symp. on Solid State Chem. of Advanced Materials, Tokyo, Japan, Dec. 1990, pp. 83–89 (1992).

  101. R. R. Dils and P. S. Follansbee, Control of metal alloy oxidation with electric fields,Proc. Elect. Microsc. Soc. Am. 31, 164–165 (1973).

    Google Scholar 

  102. J S. Sheasby and J. G. Grandsen, The ionic transport properties of aluminia scales,Proc. 6th Int. Cong, on Metallic Corrosion, 723–730 (1975).

  103. J. S. Sheasby and D. B. Jory, Electrical properties of growing alumina scales,Oxid. Met. 12(6), 527–539 (1978).

    Google Scholar 

  104. G. Ben Abderrazik, F. Millot, G. Moulin, and A. M. Huntz, Experimental procedure for determining transport properties of oxide scales,J. Am. Ceram. Soc. 68(6), 302–306 (1985).

    Google Scholar 

  105. G. Ben Abderrazik, F. Millot, G. Moulin, and A. M. Huntz, Determination of transport properties of oxide scales,J. Am. Ceram. Soc. 68(6), 307–314 (1985).

    Google Scholar 

  106. G. Ben Abderrazik, G. Moulin, A. M. Huntz, and F. Millot, Transport properties of Al2O3 scale developed by oxidation of a Fe-Cr-Al alloy, 8th European Cong, on Corrosion, Vol.1, Paper 69 (1985).

  107. A. M. Huntz, G. Moulin, and B. Lesage, Contribution of combined techniques for studying oxidation mechanisms, Proc. 9th Int. Cong, on Metallic Corrosion, Vol. 2, (1984), pp. 400–405.

    Google Scholar 

  108. G. Ben Abderrazik, F. Millot, G. Moulin, and A. M. Huntz, Comment on ‘Experimental procedure for determining transport properties of oxide scales’ and ‘Determination of transport properties of alumina oxide scale’,J. Am. Ceram, Soc. 70(12), 374–375 (1987).

    Google Scholar 

  109. J. H. Davidson, P. Lacombe, A. M Huntz, C. Roques-Carmes, J. C. Pivin, and D. Delauney, The development of oxidation-resistant Fe-Ni-Cr-Al alloys for use at temperatures up to 1300°C, Proc. Conf. on Behavior of High-Temperature Alloys in Aggressive Environments, The Metals Society, (1980), pp. 209–224.

  110. D. P. Moon, Role of reactive elements in alloy protection,Mater. Sci. Eng. 5(8), 754–764 (1989).

    Google Scholar 

  111. D. P. Whittle and J. Stringer, Improvement in high-temperature oxidation resistance by additions of reactive elements or oxide dispersions,Phil. Trans. Roy. Soc. Lond. A 295, 309–329 (1980).

    Google Scholar 

  112. G. Beranger, F. Armanet, and M. Lambertin, Active elements in oxidation and their properties, Proc. Conf. on The Role of Active Elements in Oxidation Behavior of High Temperature Metals and Alloys (1988), pp. 33–51.

  113. J. Stringer, The reactive element effect in high-temperature corrosion,Mater. Sci. Eng. A 120, 129–137 (1989).

    Google Scholar 

  114. A. M. Huntz, French research on the effect of reactive elements on the oxidation behavior,Mater. Sci. Forum 43, 131–206 (1989).

    Google Scholar 

  115. A. M. Huntz, Influence of active elements on the oxidation of M-Cr-Al alloys,Mater. Sci. Eng. 87, 251–260 (1987).

    Google Scholar 

  116. J. Jedlinski, The influence of reactive elements on the oxidation behavior of alumina formers,Proc. 11th Int. Con. Cong. 4, 21–28 (1990).

    Google Scholar 

  117. A. M. Huntz, The effect of active elements on the oxidation behavior of Al2O3 formers, Proc. Conf. on The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys (1988), pp. 81–109.

  118. J. Stringer, B. A. Wilcox, and R. I. Jaffee, High-temperature oxidation of nickel-20 wt% chromium alloys containing dispersed oxide phases,Oxid. Met. 5(1), 11–47 (1972).

    Google Scholar 

  119. G. C. Wood, Fundamental factors determining the mode of scaling of heat resistant alloys,Werkst. Korros. 22, 491–503 (1971).

    Google Scholar 

  120. T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton, Metallic yttrium additions to high-temperature alloys: influence on Al2O3 scale properties,Oxid. Met. 22(3/4), 83–100 (1984).

    Google Scholar 

  121. T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton, The characteristics of alumina scales formed on Fe-based yttria dispersed alloys,J. Electrochem. Soc. 131(4), 923–931 (1984).

    Google Scholar 

  122. D. Delauney and A. M. Huntz, Mechanisms of adherence of alumina scale developed during high temperature oxidation of Fe-Ni-Cr-Al-Y alloys,J. Mater. Sci. 17(7), 2027–2036 (1982).

    Google Scholar 

  123. P. Choquet and R. Mervel, Microstructure of alumina scales formed on Ni-Co-Cr-Al alloys with and without yttrium,Mater. Sci. Eng. A 120–121, 153–159 (1989).

    Google Scholar 

  124. J. R. Nicholls and P. Hancock, Effect of active elements on mechanical properties of scales, Proc. Conf. on The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys (1988), pp. 195–223.

  125. J. Castaing, Effects of impurities on the mechanical properties of oxides, Proc. Conf. on The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys (1988), pp. 67–78.

  126. J. Nowok, Formation mechanisms of keying or pegging yttrium oxide and increased plasticity of alumina scale on Fe-Cr-Al-Y,Oxid. Met. 18(1/2), 1–17 (1982).

    Google Scholar 

  127. D. Delauney, A. M. Huntz, and P. Lacombe, Mechanical stresses developed in high temperature resistant alloys during isothermal and cyclic oxidation treatments: The influence of yttrium additions on oxide scale adherence,Corros. Sci. 20, 1109–1117 (1980).

    Google Scholar 

  128. M. H. Lagrange, A. M. Huntz, and J. H. Davidson, The influence of Y, Zr or Ti additions on the high temperature oxidation resistance of Fe-Ni-Cr-Al alloys of variable purity,Corros. Sci. 24(7), 613–627 (1984).

    Google Scholar 

  129. K. L. Luthra and C. L. Briant, Surface segregation in M-Cr-Al-Y alloys,Met. Trans. 19A(8), 2099–2108 (1988).

    Google Scholar 

  130. J. G. Smeggil, A. W. Funkenbusch, and N. S. Bornstein, A relationship between indigenous impurity elements and protective oxide scale adherence characteristics,Met. Trans. 17A(6), 923–938 (1986).

    Google Scholar 

  131. A. W. Funkenbusch, J. G. Smeggil, and N. S. Bornstein, Reactive element-sulfur interactions and oxide scale adherence,Met. Trans. 16A(6), 1164–1166 (1985).

    Google Scholar 

  132. J. G. Smeggil, Some comments on the role of yttrium in protective oxide scale adherence,Mater. Sci. Eng. 87, 261–265 (1987).

    Google Scholar 

  133. D. R. Sigler, The influence of sulfur on adherence of Al2O3 grown on Fe-Cr-Al alloys,Oxid. Met. 29(1/2), 23–43 (1988).

    Google Scholar 

  134. J. G. Smeggil and A. J. Shuskus, The oxidation behavior of some Fe-Cr-Al-Y, Fe-Cr-Al and yttrium ion-implanted Fe-Cr-Al alloys compared and contrasted,J. Vac. Sci. Technol A 4(6), 2577–2582 (1986).

    Google Scholar 

  135. K. L. Luthra and C. L. Briant, Mechanism of adhesion of alumina on M-Cr-Al-Y alloys,Oxid. Met. 26, 397–416 (1986).

    Google Scholar 

  136. K. L. Luthra and C. L. Briant, The role of surface segregation and stresses in scale adherence, Proc. Conf. on The Reactive Element Effect on High Temperature Oxidation — after 50 years, Mater. Sci. Forum (1989), pp. 299–325.

  137. A. S. Khanna, W. J. Quadakkers, and C. Wasserfuhr, The influence of sulfur and its interaction with yttrium on the composition, growth and adherence of oxide scales on alumina-forming alloys, Prof. Conf. on The Role of Active Elements in the Oxidation Behavior of High-Temperature Metals and Alloys (1988), pp. 155–173.

  138. A. B. Anderson, S. P. Mehandru, and J. L. Smialek, Dopent effect of yttrium and the growth and adherence of alumina on nickel aluminum alloys,J. Elecrochem. Soc. 132(7), 1695–1701 (1985).

    Google Scholar 

  139. I. M. Allam, D. P. Whittle, and J. Stringer, The role of active elements and oxide dispersions in the development of oxidation resistant alloys and coatings, Proc. Symp. on Corrosion-Erosion Behavior of Materials, TMS-AIME (1978), pp. 103–117.

  140. H. Hindham and D. P. Whittle, Peg formation by short circuit diffusion in Al2O3 scales containing oxide dispersions,J. Electrochem. Soc. 129(5), 1147–1149 (1982).

    Google Scholar 

  141. H. Hindham and D. P. Whittle, Mechanism of peg growth and influence on scale adhesion, Proc. JIMIS-3 High Temperature Corrosion Trans. of the Japan Inst. of Metals, Suppl. (1983), pp. 261–268.

    Google Scholar 

  142. P. Nanni, C. T. H. Stoddart, and E. D. Hondros, Grain boundary segregation and sintering in alumina,Mater. Chem. 1(4), 297–320 (1976).

    Google Scholar 

  143. K. Przybylski, A. J. Garratt-Reed, B. A. Pint, E. P. Katz, and G. J. Yurek, Segregation of Y to grain boundaries in the Al2O3 scale formed on an ODS alloy,J. Electrochem. Soc. 134(12), 3207–3208 (1987).

    Google Scholar 

  144. R. C. McCune, W. T. Donlan and R. C. Ku, Yttrium segregation and yttrium aluminum garnet precipitation at surfaces of yttrium-dopedα-alumina,J. Am. Ceram. Soc. 69(8), C 196–199 (1986).

    Google Scholar 

  145. C. M. Cotell, K. Przybylski, and G. J. Yurek, Oxidation behavior of chromium and a chromium-yttrium binary alloy, Proc. Symp. on Fundamental Aspects of High-Temperature Corrosion II,Electrochem. Soc. 86(9), 103–127 (1986).

    Google Scholar 

  146. C. S. Giggins, B. H. Kear, F. S. Pettit, and J. K. Tien, Factors affecting adhesion of oxide scales on alloys,Met. Trans. 5(7), 1685–1688 (1974).

    Google Scholar 

  147. J. C. Pivin, D. Delauney, C. Roques-Carmes, A. M. Huntz, and P. Lacombe, Oxidation mechanism of Fe-20Ni-25Cr-5Al alloys—influence of small amounts of yttrium on oxidation kinetics and oxide adherence,Corros. Sci. 20, 351–373 (1980).

    Google Scholar 

  148. J. D. Cawley and J. W. Halloran, Dopant distribution in nominally-yttrium-doped sapphire,J. Am. Ceram. Soc. 69(8), 195–196 (1986).

    Google Scholar 

  149. M. M. El-Aiat and F. A. Kroeger, Yttrium, an isoelectric donor inα-alumina,J. Am. Ceram. Soc. 65(6), 280–283 (1982).

    Google Scholar 

  150. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham, Growth mechanism of Cr2O3 scales on Cr and Cr implanted with Y, Proc. Symp. on High Temperature Materials Chemistry IV,85(5) (1988), pp. 268–277.

    Google Scholar 

  151. D. Delauney, A. M. Huntz, and P. Lacombe, The influence of yttrium on the sintering of alumina,J. Less Common Met. 70(1), 115–117 (1980).

    Google Scholar 

  152. W. J. Quadakkers, M. Holzbrecher, K. G. Briefs, and H. Beske, Effect of yttrium dispersions on the growth and morphology of chromia and alumina scales, Proc. Conf. on the Role of Active Elements in the Oxidation Behavior of High-Temperature Metals and Alloys (1988), pp. 155–173.

  153. K. Przybylski and S. Mrowec, The influence of implanted yttrium on protective properties of Cr2O3 andα-Al2O3 scales formed on cobalt base alloys andβ-NiAl, Proc. Int. Cong. on Metallic Corrosion, Vol. 1, (1984), pp. 47–52.

    Google Scholar 

  154. S. Mrowec and J. Jedlinski, The influence of implanted yttrium and lanthanum on the kinetics and mechanics of high-temperature oxidation ofβ-NiAl intermetallic compounds, Workshop on the Oxidation of High Temperature Intermetallics, TMS (1988), pp. 57–66.

  155. S. Mrowec, A. Gil, and J. Jedlinski, The effect on certain reactive elements on the oxidation behavior of chromia- and alumina-forming alloys,Werkst. Korros. 38, 563–574 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prescott, R., Graham, M.J. The formation of aluminum oxide scales on high-temperature alloys. Oxid Met 38, 233–254 (1992). https://doi.org/10.1007/BF00666913

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666913

Key words

Navigation