Skip to main content
Log in

Highly sensitive biosensor based on nanoparticle/grating: a case study on detecting waterborne bacteria in drinking water

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present study, we propose a high sensitive refractive index (RI) liquid biosensor. The arrayed arrangement of gold spherical nanoparticles (NP) laid on a grating surface made of silicon nitride (Si3N4) is implemented. The organization of NP arrays stimulate wave coupling to manage new operation in optical range. Designing the device can be followed through monitoring subtle changes in the refraction indices (RI) of the operating surfaces. The performance of the device is numerically investigated in near-infrared region, yielding a sensitivity value of as large as 470.3 nm/RIU (refractive index unit). It shows a figure of merit more than 59 RIU−1 within the operating wavelength of 900 nm. These results emphasize the role of plasmonic occurrence in the optimizing of NP pattern for biosensor dominance over nonoptic counterparts. The variations of optical response based on changing the geometry of gold nanoparticles (Au NPs) and grating configuration create a significant capability in sensing the RI of various bio analyte materials. Analyses of the results successfully show optimum performance of the proposed biochemical sensing ability for common biosensing applications. First, the present study would lead to the development of a new type of plasmonic device capable of detecting single bacterium and effective in determining the concentration level of bacterial spectrum in drinking water. Afterwards, we proceed with a cleverly designed RI biosensor optimized for waterborne infection due to Escherichia coli (E. coli), Serratia marcescens (S. marcescens), and Mierococcus lysodeikticus (M. lysodeikticus) pathogen. These bacterial pathogens at varied concentrations would be detectable by the proposed biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almawgani, A.H.M., Uniyal, A., Sarkar, P., et al.: Sensitivity enhancement of optical plasmon-based sensor for detection of the hemoglobin and glucose: a numerical approach. Opt. Quant. Electron. 55, 963 (2023). https://doi.org/10.1007/s11082-023-05219-4

    Article  CAS  Google Scholar 

  • Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bateman, J.B., Wagman, J., Caratensen, E.L.: Refraction and absorption of light in bacterial suspensions. Colloid Polym. Sci. 208, 44–58 (1966)

    Google Scholar 

  • Beliaev, L.Y., Takayama, O., Melentiev, P.N., Lavrinenko, A.V.: Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review. Opt-Electron. Adv. 4, 210031 (2021)

    Article  CAS  Google Scholar 

  • Cattoni, A., Ghenuche, P., Haghiri-Gosnet, A.M., Decanini, D., Chen, J., Pelouard, J.L., Collin, S.: Lambda (3)/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. Nano Lett. 11(9), 3557–3563 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chen, J., et al.: Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Opt. Mater. Express 8, 342–345 (2018)

    Article  ADS  CAS  Google Scholar 

  • Coles, H.J., Jennings, R., Morris, V.J.: Refractive index increment measurement for bacterial suspensions. Phys. Med. Biol. 20, 310–313 (1975)

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, B., Lin, B., Qiu, J., Li, P., Pepper, J., Hugh, B.: A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sens. Actuators B 85, 219–226 (2002)

    Article  CAS  Google Scholar 

  • Irannejad, M., Cui, B., Yavuz, M.: Optical properties and liquid sensitivity of Au-SiO2-Au nanobelt structure. Plasmonics 11(1), 1–9 (2015)

    Article  Google Scholar 

  • Jáuregui-López, I., Rodríguez-Ulibarri, P., Kuznetsov, S.A., Quemada, C., Beruete, M.: Labyrinth metasurface for biosensing applications: numerical study on the new paradigm of metageometries. Sensors 19(20), 4396 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Kabashin, A.V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G.A., Atkinson, R., Pollard, R., Podolskiy, V.A., Zayats, A.V.: Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Karki, B., Uniyal, A., Srivastava, G., Pal, A.: Black phosphorous and cytop nanofilm-based long-range spr sensor with enhanced quality factor. J. Sens. (2023a). https://doi.org/10.1155/2023/2102915

    Article  Google Scholar 

  • Karki, B., Uniyal, A., Sarkar, P., et al.: Sensitivity improvement of surface plasmon resonance sensor for glucose detection in urine samples using heterogeneous layers: an analytical perspective. J. Opt. (2023b). https://doi.org/10.1007/s12596-023-01418-0

    Article  Google Scholar 

  • Kasani, S., Curtin, K., Wu, N.: A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics 8, 2065–2089 (2019)

    Article  CAS  Google Scholar 

  • Kaye, S., Zeng, Z., Sanders, M., Chittur, K., Koelle, P.M., Lindquist, R., Manne, U., Lin, Y., Wei, J.: Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor. Analyst 2017, 142 (1974)

    Google Scholar 

  • Kittel, C., McEuen, P.: Introduction to Solid State Physics. Wiley, New York (1996)

    Google Scholar 

  • Klinghammer, S., Uhlig, T., Patrovsky, F., Böhm, M., Schütt, J., Pütz, N., Baraban, L., Eng, L.M., Cuniberti, G.: Plasmonic biosensor based on vertical arrays of gold nanoantennas. ACS Sens. 3, 1392 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Kwon, M. S.: Integrated plasmonic sensors. Adv. Photon. OSA (2014).

  • Li, R., Wu, D., Liu, Y., Yu, L., Yu, Z., Ye, H.: Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating. Nanoscale Res. Lett. 12(1), 1 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Liu, P.Y., Chin, L.K., SerW, A.T.C., Yap, P.H., Bourouina, T., Leprince-Wang, Y.: An optofluidic imaging system to measure the biophysical signature of single waterborne bacteria. Lab Chip 14, 4237–4243 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Liu, P.Y., Chin, L.K., Ser, W., Chen, H.F., Hsieh, M., Lee, H.: Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16, 634–644 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Maier S A 2007 Plasmonics: Fundamentals and Applications (Springer)

  • Maier, S.A. Plasmonics: fundamentals and applications. 2007: Springer Science & Business Media.

  • Minopoli, A., Acunzo, A., Ventura, B.D., Velotta, R.: Nanostructured surfaces as plasmonic biosensors: a review. Adv. Mater. Interfaces 9, 2101133 (2021)

    Article  Google Scholar 

  • Oh, S.Y., Heo, N.S., Shukla, S., Huh, Y.S., et al.: Development of gold nanoparticle aptamer-based LSPR sensing chips for rapid detection of Salmonella typhimurium in pork meat. Sci. Rep. 7, 10130 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Ozozco, C.A., Urbon, C., Knight, M.W., Halas, N.J., et al.: Au nanomatryoshkas as efficient near-infrared photothermal tranducers for cancer treatment: Benchmarking against nanoshells. ACS Nano 6, 6372 (2014)

    Google Scholar 

  • Pal, A., Uniyal, A., Sarkar, P., et al.: Detecting binary mixtures of sulfolane with ethylene glycol, diethylene glycol, and polyethylene glycol in water using surface plasmon resonance sensor: a numerical investigation. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02054-x

    Article  Google Scholar 

  • Pandey, A.K., Kumar, H.: Quality factor enhanced plasmonic grating sensor in the near infrared region of application. Opt. Quant. Electron. 55, 57 (2023). https://doi.org/10.1007/s11082-022-04327-x

    Article  CAS  Google Scholar 

  • Pandey, A.K., Sharma, A.K., Marques, C.: On the application of stacked periodic tungsten grating nanostructure in wide-range plasmonic sensing and other photonic devices. Plasmonics 16, 9–17 (2021). https://doi.org/10.1007/s11468-020-01248-x

    Article  CAS  Google Scholar 

  • Pandey, A.K., Sharma, A.K.: Advancements in grating nanostructure based plasmonic sensors in last two decades: a review. IEEE Sens. 21, 12633–12644 (2020). https://doi.org/10.1109/JSEN.2020.3045292

    Article  Google Scholar 

  • Pathania, P., Shishodia, M. S. Gain-assisted transition metal ternary nitrides (Ti1−xZrxN) core–shell based sensing of waterborne bacteria in drinking water. Plasmonics (2019).

  • Rifat, A., Rahmani, M., Xu, L., Miroshnichenko, A.: Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor. Materials 11(7), 1091 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, M.S., Borges, J., Lopes, C., Pereira, R.M.S., Vasilevskiy, M.I., Vaz, F.: Gas sensors based on localized surface plasmon resonances: synthesis of oxide films with embedded metal nanoparticles, theory and simulation, and sensitivity enhancement strategies. Appl. Sci. 11, 5388 (2021)

    Article  CAS  Google Scholar 

  • Ruemmele, J.A., Hall, W.P., Ruvuna, L.K., Van Duyne, R.P.: A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Chem 85, 4560 (2013)

    CAS  Google Scholar 

  • Shkondin, E., Repän, T., Takayama, O., Lavrinenko, A.V.: High aspect ratio titanium nitride trench structures as plasmonic biosensor. Opt. Mater. Express 7, 4171–4182 (2017)

    Article  ADS  CAS  Google Scholar 

  • Sreekanth, K.V., Alapan, Y., ElKabbash, M., Efe Ilker, E., Hinczewski, M., Gurkan, U.A., De Luca, A., Strangi, G.: Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomáš, L., Bonyár, A.: Large scale fabrication of ordered gold nanoparticle−epoxy surface nanocomposites and their application as label-free plasmonic DNA biosensors. ACS Appl. Mater. Interfaces 12, 4804–4814 (2020)

    Article  Google Scholar 

  • Uniyal, A., Pal, A., Chauhan, B.: Long-range SPR sensor employing platinum diselenide and cytop nanolayers giving improved performance. Phys. B Condensed Matter. 649, 414487 (2023). https://doi.org/10.1016/j.physb.2022.414487

    Article  CAS  Google Scholar 

  • Uniyal, A., Pal, A., Srivastava, G., Sarkar, P., Kumar, M., Singh, S., Taya, S.A., Muduli, A.: Fluorinated graphene and CNT-based surface plasmon resonance sensor for detecting the viral particles of SARS-CoV-2. Phys. B Condensed Matter. 669, 415282 (2023). https://doi.org/10.1016/j.physb.2023.415282

    Article  CAS  Google Scholar 

  • Unser, S., Bruzas, I., He, J., Sagle, L.: Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15, 15684–15716 (2015)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Valsecchi, C., Brolo, A.G.: Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 29, 5638–5649 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Yang, A., Hryn, A.J., Schatz, G.C., Odom, T.W.: Superlattice plasmons in hierarchical Au nanoparticle arrays. ACS Photonics 2(12), 1789–1794 (2015)

    Article  CAS  Google Scholar 

  • Wang, X., et al.: Modulating plasmonic sensor with graphene-based silicon grating. Plasmonics 12, 1725–1731 (2017)

    Article  CAS  Google Scholar 

  • Wannemacher, R.: Plasmon supported-transmission of light through nanometric holes in metallic thin films. Opt. Commun. 195, 107–118 (2001)

    Article  ADS  CAS  Google Scholar 

  • Zhou, P., Zheng, G.: High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application. Opt. Mater. 78, 471–476 (2018)

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Shima Pirhaghshenasvali and Rahim Ghayour wrote the main manuscript text and Shima Pirhaghshenasvali, Rahim Ghayour and Mahsa Vaghefi prepared figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Rahim Ghayour.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirhaghshenasvali, S., Ghayour, R. & Vaghefi, M. Highly sensitive biosensor based on nanoparticle/grating: a case study on detecting waterborne bacteria in drinking water. Opt Quant Electron 56, 602 (2024). https://doi.org/10.1007/s11082-023-06204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06204-7

Keywords

Navigation