Skip to main content
Log in

Detecting Binary Mixtures of Sulfolane with Ethylene Glycol, Diethylene Glycol, and Polyethylene Glycol in Water Using Surface Plasmon Resonance Sensor: A Numerical Investigation

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This work offers a quite sensitive SPR-based sensor with a new heterostructure based on platinum and ITO using silver as the plasmonic metal to examine the detection of sulfolane, ethylene glycol, diethylene glycol, and polyethylene glycol (PEG-200 and PEG-600) in water. The widely utilized transfer matrix technique (TMM) was employed to evaluate the performance of the suggested sensor. The noble plasmonic material silver (Ag) with a thickness of 40 nm is utilized to induce surface plasmons. As an adhesive layer, Cytop is used between the ITO and sensing layer; the thickness of 0.5 nm has been taken. The sensor’s performance was evaluated in terms of reflectance, full width at half maximum (FWHM), detection accuracy, sensitivity, and figure of merit. These parameters are also evaluated by varying the platinum (P) and ITO (I) layers. The suggested sensor has a maximum sensitivity of 144.1988 degree/RIU (for \(P=1, I=9\)), DA of 1.8867 degree−1, and FoM of 98.66 RIU−1 (for \(P=3, I=1\)). The operating wavelength of 633 nm is used here for this numerical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

No data available.

Code Availability

Not applicable.

References

  1. Hatch LF, Matar S (1978) “No title,” Hydrocarb. Process 57(8):153–165

  2. Reichardt C (2007) Solvents and solvent effects: an introduction. Org Process Res Dev 11(1):105–113. https://doi.org/10.1021/op0680082

    Article  CAS  Google Scholar 

  3. Headley JV, Fedorak PM, Dickson LC (2002) A review of analytical methods for the determination of sulfolane and alkanolamines in environmental studies. J AOAC Int 85(1):154–162

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Switzerland) 15(5):10481–10510. https://doi.org/10.3390/s150510481

    Article  CAS  Google Scholar 

  5. Bellassai N, Agata RD, Jungbluth V, Spoto G (2019) Surface plasmon resonance for biomarker detection. Ddv Non-invasive Cancer Diagn 7:1–16. https://doi.org/10.3389/fchem.2019.00570

  6. Asif M et al (2020) The role of biosensors in coronavirus disease-2019 outbreak. Curr Opin Electrochem 23:174–184. https://doi.org/10.1016/j.coelec.2020.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mauriz E (2020) Recent progress in plasmonic biosensing schemes for virus detection. Sensors 20(17). https://doi.org/10.3390/s20174745

  8. Taha BA, Al Mashhadany Y, Hafiz Mokhtar MH, M. S. Dzulkefly Bin Zan, and N. Arsad, “An analysis review of detection coronavirus disease, (2019) (COVID-19) based on biosensor application”. Sensors 20(23):2020. https://doi.org/10.3390/s20236764

    Article  CAS  Google Scholar 

  9. Akowuah EK, Gorman T, Haxha S (2009) Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration. Opt Express 17(26):23511–23521. https://doi.org/10.1364/OE.17.023511

    Article  CAS  PubMed  Google Scholar 

  10. Verma A, Prakash A, Tripathi R (2015) Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt Commun 357:106–112. https://doi.org/10.1016/j.optcom.2015.08.076

    Article  CAS  Google Scholar 

  11. Li L et al (2017) Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor. Opt Express 25(22):26950–26957. https://doi.org/10.1364/OE.25.026950

    Article  PubMed  Google Scholar 

  12. Uniyal A, Srivastava G Pal A, Taya S, Muduli A (2023) Recent advances in optical biosensors for sensing applications : a review. Plasmonics no. 0123456789. https://doi.org/10.1007/s11468-023-01803-2

  13. Taya SA et al (2023) Highly sensitive sensor based on SPR nanostructure employing graphene and perovskite layers for the determination of blood hemoglobin concentration. Optik (Stuttg) 281:170857. https://doi.org/10.1016/j.ijleo.2023.170857

  14. Karki B, Vasudevan B, Uniyal A, Pal A, Srivastava V (2022) Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik (Stuttg) 270:169947. https://doi.org/10.1016/j.ijleo.2022.169947

  15. Singh S et al (2022) Sensitivity enhancement of SPR biosensor employing heterostructure blue phosphorus/MoS2and silicon layer. Emerg Mater Res 1–12. https://doi.org/10.1680/jemmr.22.00009

  16. Singh S, Sharma AK, Lohia P, Dwivedi DK, Singh PK (2022) Design and modelling of high-performance surface plasmon resonance refractive index sensor using BaTiO3, MXene and nickel hybrid nanostructure. Plasmonics 17(5):2049–2062. https://doi.org/10.1007/s11468-022-01692-x

    Article  CAS  Google Scholar 

  17. Rikta KA, Anower MS, Rahman MS, Rahman MM (2021) SPR biosensor using SnSe-phosphorene heterostructure. Sens. Bio-Sensing Res 33:100442. https://doi.org/10.1016/j.sbsr.2021.100442

  18. Uniyal A, Chauhan B, Pal A, Tomar S, Uniyal PD (2023) Surface plasmon resonance sensor for enhancement of sensitivity. J Graph Era Univ 11:177–190. https://doi.org/10.13052/jgeu0975-1416.1124

    Article  Google Scholar 

  19. Rhodes C et al (2006) Surface plasmon resonance in conducting metal oxides. J Appl Phys 100(5). https://doi.org/10.1063/1.2222070

  20. Rhodes C et al (2008) Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. J Appl Phys 103(9):93108. https://doi.org/10.1063/1.2908862

    Article  CAS  Google Scholar 

  21. Khamh H, Sachet E, Kelly K, Maria J-P, Franzen S (2018) As good as gold and better: conducting metal oxide materials for mid-infrared plasmonic applications. J Mater Chem C 6(31):8326–8342. https://doi.org/10.1039/C7TC05760A

    Article  CAS  Google Scholar 

  22. Shah K, Sharma NK, Sajal V (2018) Analysis of fiber optic SPR sensor utilizing platinum based nanocomposites. Opt Quantum Electron 50(6). https://doi.org/10.1007/s11082-018-1533-x

  23. Shah K, Sharma NK (2022) Theoretical study on fiber optic SPR sensor using indium nitride. Indian J Phys 96(1):275–279. https://doi.org/10.1007/s12648-020-01960-8

    Article  CAS  Google Scholar 

  24. Huang T (2017) Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength. Plasmonics 12(3):583–588. https://doi.org/10.1007/s11468-016-0301-7

    Article  CAS  Google Scholar 

  25. Verma RK (2018) Sensitivity enhancement of a lossy mode resonance based tapered fiber optic sensor with an optimum taper profile. J Phys D Appl Phys 51(41):415302. https://doi.org/10.1088/1361-6463/aadb0f

  26. Mishra AK, Mishra SK (2015) Infrared SPR sensitivity enhancement using ITO/TiO2/silicon overlays. Europhys Lett 112(1):10001. https://doi.org/10.1209/0295-5075/112/10001

    Article  CAS  Google Scholar 

  27. Lin Y-C, Chen L-Y, Chiu F-C (2019) Lossy mode resonance-based glucose sensor with high-κ dielectric film. Crystals 9(9). https://doi.org/10.3390/cryst9090450

  28. Zeng S et al (2013) Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensors Actuators B Chem 176:1128–1133. https://doi.org/10.1016/j.snb.2012.09.073

    Article  CAS  Google Scholar 

  29. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Phys A Hadron Nucl 216(4):398–410. https://doi.org/10.1007/BF01391532

    Article  CAS  Google Scholar 

  30. Sharma AK, Jha R, Pattanaik HS (2010) Design considerations for surface plasmon resonance based detection of human blood group in near infrared. J Appl Phys 107(3):34701. https://doi.org/10.1063/1.3298503

    Article  CAS  Google Scholar 

  31. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94(3):1–4. https://doi.org/10.1063/1.3073717

    Article  CAS  Google Scholar 

  32. Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sensors Actuators B Chem 107(1)40–46 https://doi.org/10.1016/j.snb.2004.08.030

  33. Kumar S, Kumar A (2021) Results in Optics ITO / Polymer matrix assisted surface plasmon resonance based fiber optic sensor,” Results Opt 5:100173. https://doi.org/10.1016/j.rio.2021.100173

  34. Mishra AK (2017) Giant infrared sensitivity of surface plasmon resonance-based refractive index sensor. https://doi.org/10.1007/s11468-017-0619-9

  35. Gaur DS, Purohit A, Mishra SK, Mishra AK (2022) An interplay between lossy mode resonance and surface plasmon resonance and their sensing applications

  36. Mishra SK, Mishra AK, Misra KP, Verma RK (2022) Detection of alcohol content in food products by lossy mode resonance technique. J Electrochem Soc 169(7):77504

    Article  Google Scholar 

  37. Sharma S, Mishra SK (2023) Exploiting the advantages of Ag/ITO/enzyme trapped gel layers to develop a highly sensitive and selective fiber optic plasmonic urea sensor

  38. Mishra AK, Mishra SK, Gupta BD (2015) Gas-clad two-way fiber optic SPR sensor: a novel approach for refractive index sensing. Plasmonics 10:1071–1076

    Article  CAS  Google Scholar 

  39. Singh S, Mishra SK, Gupta BD (2013) Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides. Sensors Actuators A Phys 193:136–140

    Article  CAS  Google Scholar 

  40. Verma k et al (2021) Robust visual tracking with occlusion handling using Gaussian mixture modeling. 258

  41. Almawgani AHM, Sarkar P, Pal A, Srivastava H, Uniyal A (2023) Titanium disilicide, black phosphorus–based surface plasmon resonance sensor for dengue detection. Plasmonics no. 0123456789. https://doi.org/10.1007/s11468-023-01856-3

  42. Sharma NK, Shukla S, Sajal V (2017) Surface plasmon resonance based fiber optic sensor using an additional layer of platinum: a theoretical study. Optik (Stuttg) 133:43–50. https://doi.org/10.1016/j.ijleo.2017.01.004

    Article  CAS  Google Scholar 

  43. Han L, Ding H, Landry NNA, Hua M, Huang T (2020) Highly sensitive SPR sensor based on Ag-ITO-BlueP/TMDCs-graphene heterostructure. Plasmonics 15(5):1489–1498. https://doi.org/10.1007/s11468-020-01165-z

    Article  CAS  Google Scholar 

  44. Karki B, Uniyal A, Srivastava G, Pal A (2023) Black phosphorous and cytop nanofilm-based long-range SPR sensor with enhanced quality factor. J Sensors 2023. https://doi.org/10.1155/2023/2102915

  45. Pandey S, Singh S, Agarwal S, Sharma AK, Lohia P, Dwivedi DK (2022) Simulation study to improve the sensitivity of surface plasmon resonance sensor by using ferric oxide, nickel and antimonene nanomaterials. Optik (Stuttg) 267:169757. https://doi.org/10.1016/j.ijleo.2022.169757

  46. Srivastava S, Singh S, Mishra AC, Lohia P, Dwivedi DK (2023) Numerical study of titanium dioxide and MXene nanomaterial-based surface plasmon resonance biosensor for virus SARS-CoV-2 detection. Plasmonics no. 0123456789. https://doi.org/10.1007/s11468-023-01874-1

  47. Yadav A, Kumar A, Sharan P (2022) Sensitivity enhancement of a plasmonic biosensor for urine glucose detection by employing black phosphorous. J Opt Soc Am B 39(1):200–206. https://doi.org/10.1364/JOSAB.444838

    Article  CAS  Google Scholar 

  48. Karki B, Uniyal A, Chauhan B, Pal A (2022) Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region. J Comput Electron. https://doi.org/10.1007/s10825-022-01854-4

  49. Almawgani AHM, Uniyal A, Sarkar P, Srivastava G (2023) Sensitivity enhancement of optical plasmon-based sensor for detection of the hemoglobin and glucose : a numerical approach. Opt Quantum Electron. https://doi.org/10.1007/s11082-023-05219-4

    Article  Google Scholar 

  50. Almawgani AHM, Uniyal A, Sarkar P, Srivastava G, Alzahrani A (2023) Creatinine detection by surface plasmon resonance sensor using layers of cerium oxide and graphene over conventional Kretschmann configuration. Plasmonics. https://doi.org/10.1007/s11468-023-01891-0

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ansari G, Pal A, Srivastava AK, Verma G (2023) Detection of hemoglobin concentration in human blood samples using a zinc oxide nanowire and graphene layer heterostructure based refractive index biosensor. Opt Laser Technol 164(2):111. https://doi.org/10.1016/0030-3992(80)90045-6

    Article  Google Scholar 

  52. Uniyal A, Pal A, Chauhan B (2022) Long-range Spr sensor employing platinum diselenide and cytop nanolayers giving improved performance. Phys B Condens Matter 649:414487. https://doi.org/10.2139/ssrn.4230023

  53. Pandey PS, Raghuwanshi SK, Singh Y (2022) Enhancement of the sensitivity of a surface plasmon resonance sensor using a nobel structure based on barium titanate–graphene -silver. Opt Quantum Electron. https://doi.org/10.1007/s11082-022-03803-8

    Article  Google Scholar 

  54. Mudgal N, Saharia A, Agarwal A, Singh G (2020) ZnO and bi-metallic (Ag–Au) layers based surface plasmon resonance (SPR) biosensor with BaTiO3 and graphene for biosensing applications. IETE J Res. https://doi.org/10.1080/03772063.2020.1844074

    Article  Google Scholar 

  55. Kushwaha AS, Kumar A, Kumar R, Srivastava SK (2018) A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photonics Nanostructures - Fundam Appl 31:99–106. https://doi.org/10.1016/j.photonics.2018.06.003

    Article  Google Scholar 

  56. Rahman MS, Anower MS, Hasan MR, Hossain MB, Haque MI (2017) Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Opt Commun 396:36–43

    Article  CAS  Google Scholar 

  57. Moznuzzaman M, Rafiqul Islam M, Biplob Hossain M, Mustafa Mehedi I (2020) Modeling of highly improved SPR sensor for formalin detection. Results Phys 16:102874. https://doi.org/10.1016/j.rinp.2019.102874

Download references

Author information

Authors and Affiliations

Authors

Contributions

Amrindra Pal: conceptualization (equal), writing—review and editing (equal). Arun Uniyal: methodology (equal), writing—review and editing (equal). Partha Sarkar: investigation (equal), methodology (equal). Gaurav Srivastava: investigation (equal), methodology (equal). Hira Lal Yadav: formal analysis (equal), methodology (equal). Gaurav Dhiman: supervision (lead), draft preparation. Sofyan A. Taya: supervision (lead), investigation. Arjuna Muduli: supervision (lead), investigation.

Corresponding author

Correspondence to Amrindra Pal.

Ethics declarations

Ethics Approval

Not applicable. The work presented in this manuscript is mathematical modelling only for the proposed biosensor. No experiment was performed on the human body and living organisms/animals. So, ethical approval from an ethical committee is not required.

Consent to Participate

I am willing to participate in the work presented in this manuscript.

Consent for Publication

The author has given their consent to publish this work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Uniyal, A., Sarkar, P. et al. Detecting Binary Mixtures of Sulfolane with Ethylene Glycol, Diethylene Glycol, and Polyethylene Glycol in Water Using Surface Plasmon Resonance Sensor: A Numerical Investigation. Plasmonics 19, 1019–1029 (2024). https://doi.org/10.1007/s11468-023-02054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02054-x

Keywords

Navigation