Skip to main content
Log in

New optical solitons and modulation instability analysis of generalized coupled nonlinear Schrödinger–KdV system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, the generalized coupled nonlinear Schrödinger–KdV (NLS–KdV) system is investigated to obtain new optical soliton solutions. This system appears as a model for reciprocity between long and short waves in various physical settings. Different kinds of new soliton solutions including dark, bright, combined dark-bright, singular and combined singular soliton solutions are obtained using two effective methods namely, the extended sinh–Gordon equation expansion method and the solitary wave ansatz method. In addition, the modulation instability analysis of the system is presented based on the standard linear-stability analysis. The behaviours of obtained solutions are expressed by 3D graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Ahmad, I., Ahmad, H., Inc, M., Rezazadeh, H., Akbar,M.A., Khater,M.M.A., Akinyemi, L., Jhangeer, A.: Solution of fractional-order Korteweg–de Vries and Burgers’ equations utilizing local meshless method. J. Ocean Eng. Sci. (2021)

  • Akinyemi, L., Şenol, M., Mirzazadeh, M., Eslami, M.: Optical solitons for weakly nonlocal Schrödinger equation with parabolic law nonlinearity and external potential. Optik 230, 166281 (2021a)

  • Akinyemi, L., Şenol, M., Osman, M.S.: Analytical and approximate solutions of nonlinear Schrödinger equation with higher dimension in the anomalous dispersion regime. J. Ocean Eng. Sci. 7(2), 143–154 (2021b)

  • Akinyemi, L., Şenol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021c)

  • Akinyemi, L., Şenol, M., Akpan, U., et al.: The optical soliton solutions of generalized coupled nonlinear Schrödinger–Korteweg–de Vries equations. Opt. Quantum Electron. 53, 394 (2021d)

  • Albert, J., Angulo Pava, J.: Existence and stability of ground-state solutions of a Schrödinger–KdV system. Proc. R. Soc. Edinburgh Sect. A 133(5), 987–1029 (2003)

    Article  Google Scholar 

  • Albert, J., Bhattarai, S.: Existence and stability of a two-parameter family of solitary waves for an NLS–KdV system. Adv. Differ. Equ. 18, 1129–1164 (2013)

    MathSciNet  MATH  Google Scholar 

  • Angulo Pava, J.: Stability of solitary wave solutions for equations of short and long dispersive waves. Electron. J. Differ. Equ. 72, 1–18 (2006)

    MathSciNet  MATH  Google Scholar 

  • Bilal, M., Younas, U., Ren, J.: Dynamics of exact soliton solutions in the double-chain model of deoxyribonucleic acid. Math. Methods Appl. Sci. 44(17), 13357–13375 (2021)

  • Chen, L.: Orbital stability of solitary waves of the nonlinear Schrödinger–KdV equation. J. Partial Differ. Equ. 12, 11–25 (1999)

    MATH  Google Scholar 

  • Colorado, E.: Existence of bound and ground states for a system of coupled nonlinear Schrodinger–KdV equations. C. R. Math. Acad. Sci. Paris 353(6), 511–516 (2015)

    Article  MathSciNet  Google Scholar 

  • Colorado, E.: On the existence of bound and ground states for some coupled nonlinear Schrodinger–Korteweg–de Vries equations. Adv. Nonlinear Anal. 6(4), 407–426 (2017)

    Article  MathSciNet  Google Scholar 

  • Corcho, A.J., Linares, F.: Well-posedness for the Schrodinger–Korteweg–de Vries system. Trans. Am. Math. Soc. 359(9), 4089–4106 (2007)

    Article  MathSciNet  Google Scholar 

  • Dias, J.P., Figueira, M., Oliveira, F.: Well-posedness and existence of bound states for a coupled Schrödinger–gKdV system. Nonlinear Anal. 73, 2686–2698 (2010)

    Article  MathSciNet  Google Scholar 

  • Zayed, E.M.E., Al-Nowehy, A.-G.: The solitary wave ansatz method for finding the exact bright and dark soliton solutions of two nonlinear Schrödinger equations. J. Assoc. Arab Univ. Basic Appl. Sci. 24(1), 184–190 (2017)

    Google Scholar 

  • Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)

    Article  MathSciNet  Google Scholar 

  • Geng, Q., Liao, M., Wang, J., Xiao, L.: Existence and bifurcation of nontrivial solutions for the coupled nonlinear Schrodinger–Korteweg–de Vries system. Z. Angew. Math. Phys. 71, 33 (2020)

    Article  MathSciNet  Google Scholar 

  • Güner, Ö., Bekir, A., Karaca, F.: Optical soliton solutions of nonlinear evolution equations using ansatz method. Optik 127(1), 131–134 (2016)

    Article  ADS  Google Scholar 

  • Guo, D., Tian, S.F., Zhang, T.T., et al.: Modulation instability analysis and soliton solutions of an integrable coupled nonlinear Schrödinger system. Nonlinear Dyn. 94, 2749–2761 (2018)

    Article  Google Scholar 

  • Irshad, A., Ahmed, N., Khan, U., Mohyud-Din, S.T., Khan, I., Sherif, E.-S.M.: Optical solutions of Schrödinger equation using extended Sinh–Gordon equation expansion method. Front. Phys. 8, 73 (2020)

    Article  Google Scholar 

  • Kawahara, T., Sugimoto, N., Kakutani, T.: Nonlinear interaction between short and long capillary-gravity waves. J. Phys. Soc. Jpn. 39, 1379–1386 (1975)

    Article  ADS  Google Scholar 

  • Khater, M.M.A., Jhangeer, A., Rezazadeh, H., et al.: New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Opt. Quantum Electron. 53, 609 (2021a)

  • Khater, M.M.A., Akbar, M.A., Akinyemi, L., et al.: Bifurcation of new optical solitary wave solutions for the nonlinear long-short wave interaction system via two improved models of \((G^{\prime }/G)\) expansion method. Opt Quant Electron. 53, 507 (2021b)

  • Khater, M.M.A., Jhangeer, A., Rezazadeh, H., et al.: New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Opt. Quantum Electron. 53, 609 (2021c)

  • Khodadad, F.S., Mirhosseini-Alizamini, S.M., Günay, B., et al.: Abundant optical solitons to the Sasa–Satsuma higher-order nonlinear Schrödinger equation. Opt. Quant Electron. 53, 702 (2021)

    Article  Google Scholar 

  • Kumar, D., Manafian, J., Hawlader, F., Ranjbaran, A.: New closed form soliton and other solutions of the Kundu–Eckhaus equation via the extended sinh–Gordon equation expansion method. Optik 160, 159–167 (2018)

    Article  ADS  Google Scholar 

  • Mathanaranjan, T.: Solitary wave solutions of the Camassa–Holm–Nonlinear Schrödinger Equation. Results Phys. 19, 103549 (2020)

    Article  Google Scholar 

  • Mathanaranjan, T.: Exact and explicit traveling wave solutions to the generalized Gardner and BBMB equations with dual high-order nonlinear terms. Partial Differ. Equ. Appl. Math. 4, 100120 (2021a)

  • Mathanaranjan, T.: Soliton solutions of deformed nonlinear Schrödinger equations using ansatz method. Int. J. Appl. Comput. Math. 7, 159 (2021b)

  • Mathanaranjan, T., Himalini, K.: Analytical solutions of the time-fractional non-linear Schrodinger equation with zero and non zero trapping potential through the Sumudu Decomposition method. J. Sci. Univ. Kelaniya 12, 21–33 (2019)

    Article  Google Scholar 

  • Mathanaranjan, T.., Vijayakumar, D.: Laplace decomposition method for time-fractional Fornberg–Whitham type equations. J. Appl. Math. Phys. 9, 260–271 (2021)

    Article  Google Scholar 

  • Mirzazadeh, M., Akinyemi, L., Şenol, M., Hosseini, K.: A variety of solitons to the sixth-order dispersive (3+1)-dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-septic nonlinearities. Optik 241, 166318 (2021)

    Article  ADS  Google Scholar 

  • Pinar, Z., Rezazadeh, H., Eslami, M.: Generalized logistic equation method for Kerr law and dual power law Schrödinger equations. Opt. Quantum Electron. 52, 504 (2020)

    Article  Google Scholar 

  • Senol, M., Iyiola, O.S., Daei Kasmaei, H., Akinyemi, L.: Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent–Miodek system with energy-dependent Schrödinger potential. Adv. Differ. Equ. 2019, 1–21 (2019)

    Article  Google Scholar 

  • Senol, M., Az-Zobi, E., Akinyemi, L., Alleddawi, A.: Novel soliton solutions of the generalized (3+1)-dimensional conformable KP and KP–BBM equations. Comput. Sci. Eng. 1(1), 1–29 (2021)

    Google Scholar 

  • Wazwaz, A.M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 187, 1131–1142 (2007)

    MathSciNet  MATH  Google Scholar 

  • Zafar, A., Shakeel, M., Ali, A., et al.: Optical solitons of nonlinear complex Ginzburg–Landau equation via two modified expansion schemes. Opt. Quantum Electron. 54, 5 (2022)

    Article  Google Scholar 

  • Zayed, E.M.E., Gepreel, K.A.: The \((G^{\prime }/G)\)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50(1), 013502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilagarajah Mathanaranjan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with regard to the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathanaranjan, T. New optical solitons and modulation instability analysis of generalized coupled nonlinear Schrödinger–KdV system. Opt Quant Electron 54, 336 (2022). https://doi.org/10.1007/s11082-022-03723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03723-7

Keywords

Navigation