Skip to main content
Log in

Existence and bifurcation of nontrivial solutions for the coupled nonlinear Schrödinger–Korteweg–de Vries system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In the present paper, we study the existence and bifurcation of nontrivial solutions of the nonlinear Schrödinger–Korteweg–de Vries (NLS–KdV) and Schrödinger–Korteweg–de Vries–Korteweg–de Vries (NLS–KdV–KdV) systems which arise from fluid mechanics. On the one hand, for both the three-wave system and the two-wave system, the existence/nonexistence, continuous dependence and asymptotic behavior of positive ground state solutions are established. On the other hand, multiple positive solutions are found via a combination of Nehari manifold and bifurcation methods for the attractive interaction case, which has not been found for the conventional nonlinear Schrödinger systems with cubic nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akhmediev, N., Ankiewicz, A.: Solitons, Nonlinear Pulses and Beams. Champman Hall, London (1997)

    MATH  Google Scholar 

  2. Albert, J., Pava, J.Angulo: Existence and stability of ground-state solutions of a Schrödinger-KdV system. Proc. R. Soc. Edinb. 133A, 987–1029 (2003)

    MATH  Google Scholar 

  3. Ambrosetti, A.: A note on nonlinear Schrödinger systems: existence of a-symmetric solutions. Adv. Nonlinear Stud. 6, 149–155 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Ambrosetti, A., Colorado, E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 342, 453–458 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Ambrosetti, A., Colorado, E., Ruiz, D.: Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 30, 85–112 (2007)

    MATH  Google Scholar 

  7. Bartsch, T., Wang, Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19(3), 200–207 (2006)

    MATH  Google Scholar 

  8. Bartsch, T., Wang, Z.-Q., Wei, J.-C.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2(2), 353–367 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37, 345–361 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Bates, P.-W., Shi, J.-P.: Existence and instability of spike layer solutions to singular perturbation problems. J. Funct. Anal. 196(2), 211–264 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Busca, J., Sirakov, B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163(1), 41–56 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Chang, K.C.: Methods in Nonlinear Analysis. Springer Monographs in Mathematics. Springer, Berlin (2005)

    MATH  Google Scholar 

  13. Colorado, E.: On the existence of bound and ground states for some coupled nonlinear Schrödinger–Korteweg–de Vries equations. Adv. Nonlinear Anal. 6, 407–426 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Colorado, E.: Existence of bound and ground states for a system of coupled nonlinear Schrödinger-KdV equations. C. R. Acad. Sci. Paris Ser. I 353, 511–516 (2015)

    MATH  Google Scholar 

  15. Colorado, E.: Ground states of some coupled nonlocal fractional dispersive PDEs. Electron. J. Differ. Equ. Conf. 25(2018), 39–53 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Corcho, A.-J., Linares, F.: Well-posedness for the Schrödinger–Korteweg–de Vries system. Trans. Am. Math. Soc. 359, 4089–4106 (2007)

    MATH  Google Scholar 

  17. Crandall, M.-G., Rabinowitz, P.-H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    MathSciNet  MATH  Google Scholar 

  18. de Figueiredo, D.-G., Lopes, O.: Solitary waves for some nonlinear Schrödinger systems. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25, 149–161 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Dias, J., Figueira, M., Oliveira, F.: Existence of bound states for the coupled Schrödinger-KdV system with cubic nonlinearity. C.R. Math. 348, 1079–1082 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Dias, J., Figueira, M., Oliveira, F.: Well-posedness and existence of bound states for a coupled Schrödinger-gKdV system. Nonlinear Anal. 73, 2686–2698 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Du, Y.-H., Shi, J.-P.: Allee effect and bistability in a spatially heterogeneous predator–prey model. Trans. Am. Math. Soc. 359(9), 4557–4593 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Essman, M., Shi, J.-P.: Bifurcation diagrams of coupled Schrödinger equations. Appl. Math. Comput. 219, 3646–3654 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Funakoshi, M., Oikawa, M.: The resonant interaction between a long internal gravity wave and a surface gravity wave packet. J. Phys. Soc. Jpn. 52(1), 1982–1995 (1983)

    MathSciNet  Google Scholar 

  24. Kwong, M.-K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({\mathbb{R}}^{N}\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    MATH  Google Scholar 

  25. Kawahara, T., Sugimoto, N., Kakutani, T.: Nonlinear interaction between short and long capillary-gravity waves. J. Phys. Soc. Jpn. 39, 1379–1386 (1975)

    Google Scholar 

  26. Liu, C., Zheng, Y.: On soliton solutions to a class of Schrödinger-KdV systems. Proc. Am. Math. Soc. 141(10), 3477–3484 (2013)

    MATH  Google Scholar 

  27. Lin, L.-S., Liu, Z.-L., Chen, S.-W.: Multi-bump solutions for a semilinear Schrödinger equation. Indiana Univ. Math. J. 58(4), 1659–1689 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Lin, T.-C., Wei, J.-C.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 22, 403–439 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Lin, T.-C., Wei, J.: Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}}^{n}(n\ge 3)\). Commun. Math. Phys. 255, 629–653 (2005)

    MATH  Google Scholar 

  30. Liu, Z.-L., Wang, Z.-Q.: Multiple bound states of nonlinear Schrödinger systems. Commun. Math. Phys. 282, 721–731 (2008)

    MATH  Google Scholar 

  31. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case I–II. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1(109–145), 223–283 (1984)

    MathSciNet  MATH  Google Scholar 

  32. Maia, L., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229, 743–767 (2006)

    MATH  Google Scholar 

  33. Makhankov, V.: On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq’s equation. Phys. Lett. A 50, 42–44 (1974)

    Google Scholar 

  34. Ni, W.-M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281 (1993)

    MathSciNet  MATH  Google Scholar 

  35. Nishikawa, K., Hojo, H., Mima, K., Ikezi, H.: Coupled nonlinear electron-plasma and ion-acoustic waves. Phys. Rev. Lett. 33, 148–151 (1974)

    Google Scholar 

  36. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35(3), 681–703 (1986)

    MathSciNet  MATH  Google Scholar 

  37. Shi, J.-P.: Persistence and bifurcation of degenerate solutions. J. Funct. Anal. 169(2), 494–531 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}}^{n}\). Commun. Math. Phys. 271(1), 199–221 (2007)

    MATH  Google Scholar 

  39. Wang, J., Shi, J.-P.: Standing waves of a weakly coupled Schrödinger system with distinct potential functions. J. Differ. Equ. 260, 1830–1864 (2016)

    MATH  Google Scholar 

  40. Wang, J., Tian, L.-X., Xu, J.-X., Zhang, F.-B.: Multiplicity and concentration of positive solutions for a kirchhoff type problem with critical growth. J. Differ. Equ. 253(7), 2314–2351 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Wang, J., Shi, J.-P.: Standing waves of coupled Schrödinger equations with quadratic interactions from Raman amplification in a plasma (2017) (submitted)

  42. Wang, J.: Solitary waves for coupled nonlinear elliptic system with nonhomogeneous nonlinearities. Calc. Var. Partial Differ. Equ. 56, 38 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Wang, J., Shi, J.-P.: Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction. Calc. Var. Partial Differ. Equ. 56, 168 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Wei, J.-C., Yao, W.: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 11, 1003–1011 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Wei, J.-C., Winter, M.: Critical threshold and stability of cluster solutions for large reaction-diffusion systems in \({\mathbb{R}}^1\). SIAM J. Math. Anal. 33(5), 1058–1089 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkahäuser Boston Inc., Boston, MA, x+162 pp. (1996). ISBN: 0-8176-3913-6 MR1400007

  47. Zhao, L.-G., Zhao, F.-K., Shi, J.-P.: Higher dimensional solitary waves generated by second-harmonic generation in quadratic media. Calc. Var. Partial Differ. Equ. 54(3), 2657–2691 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee’s thoughtful reading of details of the paper and nice suggestions to improve the results. This work was supported by NNSFC (Grants 11971202, 11571140, 11671077), the Fellowship of Outstanding Young Scholars of Jiangsu Province (BK20160063), the Six big talent peaks project in Jiangsu Province (XYDXX-015) and the NSF of Jiangsu Province (BK20150478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Q., Liao, M., Wang, J. et al. Existence and bifurcation of nontrivial solutions for the coupled nonlinear Schrödinger–Korteweg–de Vries system. Z. Angew. Math. Phys. 71, 33 (2020). https://doi.org/10.1007/s00033-020-1256-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1256-2

Keywords

Mathematics Subject Classification

Navigation