Skip to main content
Log in

Novel optical soliton solutions for time-fractional resonant nonlinear Schrödinger equation in optical fiber

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The time-fractional resonant nonlinear Schrödinger equation is studied in this paper using the modified auxiliary equation approach. This effort yields several innovative optical soliton solutions to the investigated problem. An equivalent nonlinear ordinary differential equation with integer-order has been obtained from the time-fractional RNLSE using the modified Riemann–Liouville derivative along with fractional complex transform, and then the emerged equations are solved using the most impressive direct method, the modified auxiliary equation method. As a consequence, novel optical soliton solutions have been successfully developed, with several 3-D graphs demonstrating their behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelrahman, M.A., Alharbi, A., Almatrafi, M.B.: Fundamental solutions for the generalised third-order nonlinear Schrödinger equation. Int. J. Appl. Comput. Math. 6(6), 1–10 (2020)

    Article  MathSciNet  Google Scholar 

  • Akram, G., Mahak, N.: Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Eur. Phys. J. Plus 133(6), 1–9 (2018)

    Article  Google Scholar 

  • Aslan, E.C., Inc, M.: Optical soliton solutions of the NLSE with quadratic-cubic-Hamiltonian perturbations and modulation instability analysis. Optik 196, 162661 (2019). https://doi.org/10.1016/j.ijleo.2019.04.008

    Article  ADS  Google Scholar 

  • Bélanger, P.A., Gagnon, L., Paré, C.: Solitary pulses in an amplified nonlinear dispersive medium. Opt. Lett. 14(17), 943–945 (1989)

    Article  ADS  Google Scholar 

  • Biswas, A., Yildirim, Y., Yasar, E., Zhou, Q., Alshomrani, A.S., Moshokoa, S.P., Belic, M.: Dispersive optical solitons with Schrödinger-Hirota model by trial equation method. Optik 162, 35–41 (2018)

    Article  ADS  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics. Academic Press, London (2020)

    Google Scholar 

  • Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite-Gaussian solitons of a (3 + 1)-dimensional partially nonlocal nonlinear Schrödinger equation. Nonlinear Dynam. 84(3), 1157–1161 (2016)

    Article  MathSciNet  Google Scholar 

  • Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Ullah, M.Z., Asma, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Dispersive optical solitons with Schrödinger–Hirota equation by extended trial equation method. Optik 136, 451–461 (2017)

    Article  ADS  Google Scholar 

  • Fibich, G.: The Nonlinear Schrödinger Equation. Springer, Berlin (2015)

    Book  Google Scholar 

  • Fitio, V.M., Yaremchuk, I.Y., Romakh, V.V., Bobitski, Y.V.: A solution of one-dimensional stationary Schrödinger equation by the Fourier transform. Appl. Comput. Electromagn. Soc. 30(5), 534–539 (2015)

    Google Scholar 

  • Guner, O., Bekir, A., Korkmaz, A.: Tanh-type and sech-type solitons for some space-time fractional PDE models. Eur. Phys. J. plus 132(2), 1–12 (2017)

    Article  Google Scholar 

  • He, J.H., Elagan, S.K., Li, Z.B.: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett A 376(4), 257–259 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51(9–10), 1367–1376 (2006)

    Article  MathSciNet  Google Scholar 

  • Khater, M.M., Lu, D., Attia, R.A.: Dispersive long wave of nonlinear fractional Wu–Zhang system via a modified auxiliary equation method. AIP Adv. 9(2), 025003 (2019a). https://doi.org/10.1063/1.5087647

    Article  ADS  Google Scholar 

  • Khater, M., Attia, R.A., Lu, D.: Modified auxiliary equation method versus three nonlinear fractional biological models in present explicit wave solutions. Math. Comput. Appl. 24(1), 1 (2019b). https://doi.org/10.3390/mca24010001

    Article  MathSciNet  Google Scholar 

  • Kudryashov, N.A.: Almost general solution of the reduced higher-order nonlinear Schrödinger equation. Optik 230, 166347 (2021). https://doi.org/10.1016/j.ijleo.2021.166347

    Article  ADS  Google Scholar 

  • Li, Z.B., He, J.H.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 15(5), 970–973 (2010)

    MathSciNet  MATH  Google Scholar 

  • Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62(3), 855–875 (2011)

    Article  MathSciNet  Google Scholar 

  • Liu, X., Zhang, H., Liu, W.: The dynamic characteristics of pure-quartic solitons and soliton molecules. Appl. Math. Model. 102, 305–312 (2022)

    Article  MathSciNet  Google Scholar 

  • Ma, G., Zhao, J., Zhou, Q., et al.: Soliton interaction control through dispersion and nonlinear effects for the fifth-order nonlinear Schrödinger equation. Nonlinear Dynam. 106, 2479–2484 (2021a). https://doi.org/10.1007/s11071-021-06915-0

    Article  Google Scholar 

  • Ma, G., Zhou, Q., Yu, W., et al.: Stable transmission characteristics of double-hump solitons for the coupled Manakov equations in fiber lasers”. Nonlinear Dynam. 106, 2509–2514 (2021b). https://doi.org/10.1007/s11071-021-06919-w

    Article  Google Scholar 

  • Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T., Fang, Y.: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations. J. Geom. Phys. 146, 103508 (2019). https://doi.org/10.1016/j.geomphys.2019.103508

    Article  MathSciNet  Google Scholar 

  • Sabatier, J.A.T.M.J., Agrawal, O.P., Machado, J.T.: Advances in Fractional Calculus, vol. 4. Springer, Dordrecht (2007)

    Book  Google Scholar 

  • Saha Ray, S.: Fractional Calculus with Applications for Nuclear Reactor Dynamics. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  • Saha Ray, S.: Nonlinear Differential Equations in Physics. Springer, Singapore (2020a)

    Book  Google Scholar 

  • Saha Ray, S.: Dispersive optical solitons of time-fractional Schrödinger–Hirota equation in nonlinear optical fibers. Phys. A Stat. Mech. Appl. 537, 122619 (2020b). https://doi.org/10.1016/j.physa.2019.122619

  • Seadawy, A.R.: The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrödinger equation and its solutions. Optik 139, 31–43 (2017)

    Article  ADS  Google Scholar 

  • Seadawy, A.R., Bilal, M., Younis, M., Rizvi, S.T.R.: Resonant optical solitons with conformable time-fractional nonlinear Schrödinger equation. Int. J. Mod. Phys. B 35(3), 2150044 (2021). https://doi.org/10.1142/S0217979221500442

    Article  ADS  Google Scholar 

  • Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85(21), 4502–4505 (2000)

    Article  ADS  Google Scholar 

  • Tian, S.F.: The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2195), 20160588 (2016). https://doi.org/10.1098/rspa.2016.0588

    ADS  MATH  Google Scholar 

  • Verma, P., Kaur, L.: Solitary Wave solutions for -dimensional nonlinear Schrödinger equation with dual power law nonlinearity. Int. J. Appl. Comput. Math. 5(5), 1–15 (2019)

    MathSciNet  MATH  Google Scholar 

  • Wang, L.L., Liu, W.J.: Stable soliton propagation in a coupled (2 + 1) dimensional Ginzburg–Landau system. Chin. Phys. B 29(7), 070502 (2020). https://doi.org/10.1088/1674-1056/ab90ea

    Article  ADS  Google Scholar 

  • Wang, B.H., Lu, P.H., Dai, C.Q., Chen, Y.X.: Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation. Results Phys. 17, 103036 (2020). https://doi.org/10.1016/j.rinp.2020.103036

    Article  Google Scholar 

  • Wang, L., Luan, Z., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.: Bright soliton solutions of the (2 + 1)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing term. Nonlinear Dynam. 104(3), 2613–2620 (2021a)

    Article  Google Scholar 

  • Wang, H., Zhou, Q., Biswas, A., Liu, W.: Localized waves and mixed interaction solutions with dynamical analysis to the Gross-Pitaevskii equation in the Bose-Einstein condensate. Nonlinear Dynam. 106(1), 841–854 (2021b)

    Article  Google Scholar 

  • Yan, Y.Y., Liu, W.J.: Soliton rectangular pulses and bound states in a dissipative system modeled by the variable-coefficients complex cubic-quintic Ginzburg–Landau equation. Chin. Phys. Lett. 38(9), 094201 (2021). https://doi.org/10.1088/0256-307X/38/9/094201

    Article  ADS  Google Scholar 

  • Yang, Z.J., Zhang, S.M., Li, X.L., Pang, Z.G.: Variable sinh-Gaussian solitons in nonlocal nonlinear Schrödinger equation. Appl. Math. Lett. 82, 64–70 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Zayed, E.M.E., Alurrfi, K.A.E.: New extended auxiliary equation method and its applications to nonlinear Schrödinger-type equations. Optik 127(20), 9131–9151 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saha Ray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, N., Saha Ray, S. Novel optical soliton solutions for time-fractional resonant nonlinear Schrödinger equation in optical fiber. Opt Quant Electron 54, 112 (2022). https://doi.org/10.1007/s11082-021-03479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03479-6

Keywords

Mathematics Subject Classification

Navigation