Skip to main content
Log in

New exact solutions to the space–time fractional nonlinear wave equation obtained by the ansatz and functional variable methods

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the ansatz method and the functional variable method are employed to find new analytic solutions for the space–time nonlinear fractional wave equation, the space–time fractional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation and the space–time fractional modified Korteweg–de Vries–Zakharov–Kuznetsov equation. As a result, some exact solutions are obtained in terms of hyperbolic and periodic functions. It is shown that the proposed methods provide a more powerful mathematical tool for constructing exact solutions for many other nonlinear fractional differential equations occurring in nonlinear physical phenomena. We have also presented the numerical simulations for these equations by means of three dimensional plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Salam, E.A.B., Hassan, G.F.: Solutions to class of linear and nonlinear fractional differential equations. Commun. Theor. Phys. 65, 127–135 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Aksoy, E., Kaplan, M., Bekir, A.: Exponential rational function method for space–time fractional differential equations. Waves Random Complex Media 26, 142–151 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Alzaidy, J.F.: Fractional sub-equation method and its applications to the space-time fractional differential equations in mathematical physics. Br J Math Comput Sci 3, 153–163 (2013)

    Article  Google Scholar 

  • Aslan, I.: Exact solutions of a fractional-type differential-difference equation related to discrete MKdV equation. Commun. Theor. Phys. 61, 595–599 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Bekir, A., Guner, O., Unsal, O.: The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10, 463–470 (2015a)

    Google Scholar 

  • Bekir, A., Guner, O., Bhrawy, A.H., Biswas, A.: Solving nonlinear fractional differential equations using exp-function and \((G^{\prime }/G)\)-expansion methods. Rom. J. Phys. 60, 360–378 (2015b)

    Google Scholar 

  • Bekir, A., Guner, O., Aksoy, E.: Periodic and hyperbolic solutions of nonlinear fractional differential equations. Appl. Comput. Math. 15, 88–95 (2016)

    MathSciNet  MATH  Google Scholar 

  • Bulut, H., Baskonus, H.M., Pandir, Y.: The modified trial equation method for fractional wave equation and time fractional generalized burgers equation. Abstr. Appl. Anal. 2013, 636802 (2013)

    MathSciNet  Google Scholar 

  • Chowdhury, A., Biswas, A.: Singular solitons and numerical analysis of \({\varPhi }\)–four equation. Math. Sci. 2012, 6–42 (2012)

    MathSciNet  Google Scholar 

  • Demiray, S.T., Pandir, Y., Bulut, H.: Generalized Kudryashov method for time-fractional differential equations. Abstr. Appl. Anal. 2014, 901540 (2014)

    MathSciNet  Google Scholar 

  • Demontis, F.: Exact solutions of the modified Korteweg–de Vries. Theoret. Math. Phys. 168, 886–897 (2011)

    Article  MathSciNet  Google Scholar 

  • Ege, S.M., Misirli, E.: The modified Kudryashov method for solving some fractional-order nonlinear equations. Adv. Differ. Equ. 2014, 135 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Ekici, M., Mirzazadeh, M., Eslami, M., Zhou, Q., Belic, M.: Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives. Optik 127, 10659–10669 (2016)

    Article  ADS  Google Scholar 

  • Eslami, M., Vajargah, B.F., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations. Indian J. Phys. 88, 177–184 (2014)

    Article  ADS  Google Scholar 

  • Feng, Q., Meng, F.: Explicit solutions for space–time fractional partial differential equations in mathematical physics by a new generalized fractional Jacobi elliptic equation-based sub-equation method. Optik 127, 7450–7458 (2016)

    Article  ADS  Google Scholar 

  • Gepreel, K.A., Omran, S.: Exact solutions for nonlinear partial fractional differential equations. Chin. Phys. B 21, 110204 (2012)

    Article  MATH  Google Scholar 

  • Guner, O.: Singular and non-topological soliton solutions for nonlinear fractional differential equations. Chin. Phys. B 24, 100201 (2015)

    Article  Google Scholar 

  • Guner, O., Atik, M.: A study on the nonlinear fractional generalized reaction duffing model. New Trends Math. Sci. 3, 125–132 (2015)

    MathSciNet  Google Scholar 

  • Guner, O., Bekir, A.: Exact solutions of some fractional differential equations arising in mathematical biology. Int. J. Biomath. 8, 1550003 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Guner, O., Bekir, A.: On the concept of exact solution for nonlinear differential equations of fractional-order. Math. Meth. Appl. Sci. 39, 4035–4043 (2016a)

    Article  MathSciNet  MATH  Google Scholar 

  • Guner, O., Bekir, A.: Bright and dark soliton solutions for some nonlinear fractional differential equations. Chin. Phys. B 25, 030203 (2016b)

    Article  Google Scholar 

  • Guner, O., Cevikel, A.C.: A procedure to construct exact solutions of nonlinear fractional differential equations. Sci. World J. 2014, 489495 (2014)

    Article  Google Scholar 

  • Guner, O., Eser, D.: Exact solutions of the space time fractional symmetric regularized long wave equation using different methods. Adv. Math. Phys. 2014, 456804 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Guner, O., Bekir, A., Bilgil, H.: A note on exp-function method combined with complex transform method applied to fractional differential equations. Adv. Nonlinear Anal. 4, 201–208 (2015)

    MathSciNet  MATH  Google Scholar 

  • Guner, O., Aksoy, E., Bekir, A., Cevikel, A.C.: Different methods for (3 + 1)-dimensional space-time fractional modified KdV–Zakharov–Kuznetsov equation. Comput. Math. Appl. 71, 1259–1269 (2016)

    Article  MathSciNet  Google Scholar 

  • He, J.H., Elegan, S.K., Li, Z.B.: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 376, 257–259 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  • Huang, Q., Wang, L.Z., Zuo, Z.L.: Consistent riccati expansion method and its applications to nonlinear fractional partial differential equations. Commun. Theor. Phys. 65, 177–184 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Inc, M., Ulutas, E., Biswas, A.: Singular solitons and other solutions to a couple of nonlinear wave equations. Chin. Phys. B 22, 060204 (2013)

    Article  Google Scholar 

  • Jafari, H., Tajadodi, H., Baleanu, D., Al-Zahrani, A.A., Alhamed, Y.A., Zahid, A.H.: Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma–Tasso–Olver equation. Cent. Eur. J. Phys. 11, 1482–1486 (2013)

    Google Scholar 

  • Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann–Liouvillie derivative for nondifferentiable functions. Appl. Math. Lett. 22, 378–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  • Liu, W., Chen, K.: The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations. Pramana J. Phys. 81, 3 (2013)

    Article  Google Scholar 

  • Lu, B.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395, 684–693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Mace, R.L., Hellberg, M.A.: The Korteweg–de Vries–Zakharov–Kuznetsov equation for electron-acoustic waves. Phys. Plasmas 8, 2649–2656 (2001)

    Article  ADS  Google Scholar 

  • Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  • Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  • Mirzazadeh, M.: Topological and non-topological soliton solutions to some time-fractional differential equations. Pramana J. Phys. 85, 17–29 (2015)

    Article  ADS  Google Scholar 

  • Mirzazadeh, M.: Analytical study of solitons to nonlinear time fractional parabolic equations. Nonlinear Dyn. 85, 2569–2576 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Biswas, A.: Solitons and periodic solutions to a couple of fractional nonlinear evolution equations. Pramana J. Phys. 82, 465–476 (2014)

    Article  ADS  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Sonmezoglu, A., Eslami, M., Zhou, Q., Essaid, Z., Biswas, A., Belic, M.: Optical solitons in nano-fibers with fractional temporal evolution. J. Comput. Theor. Nanosci. 13, 5361–5374 (2016)

    Article  Google Scholar 

  • Pandir, Y., Gurefe, Y.: New exact solutions of the generalized fractional Zakharov–Kuznetsov equations. Life Sci. J. 10, 2701–2705 (2013)

    Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, California (1999)

    MATH  Google Scholar 

  • Sahoo, S., Ray, S.S.: Improved fractional sub-equation method for (3 + 1)-dimensional generalized fractional KdV–Zakharov–Kuznetsov equations. Comput. Math. Appl. 70, 158–166 (2015)

    Article  MathSciNet  Google Scholar 

  • Song, M., Liu, Z., Zerrad, Z., Biswas, A.: Singular solitons and bifurcation analysis of quadratic nonlinear Klein–Gordon equation. Appl. Math. Inf. Sci. 7, 1333–1340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Taghizadeh, N., Mirzazadeh, M., Rahimian, M., Akbari, M.: Application of the simplest equation method to some time-fractional partial differential equations. Ain Shams Eng. J. 4, 897–902 (2013)

    Article  Google Scholar 

  • Tariq, K.H., Seadawy, A.R.: Soliton solutions of (3 + 1)-dimensional Korteweg–de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves. J. King Saud Univ. Sci. (2017). https://doi.org/10.1016/j.jksus.2017.02.004

  • Uchaikin, V., Sibatov, R.: Fractional Kinetics in Solids. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  • Wazwaz, A.M.: Exact solutions of compact and noncompact structures for the KP–BBM equation. Appl. Math. Comput. 169, 700–712 (2005)

    MathSciNet  MATH  Google Scholar 

  • Zerarka, A., Ouamane, S., Attaf, A.: On the functional variable method for finding exact solutions to a class of wave equations. Appl. Math. Comput. 217, 2897 (2010)

    MathSciNet  MATH  Google Scholar 

  • Zhang, S., Zhang, H.-Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069–1073 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, S., Zong, Q.-A., Liu, D., Gao, Q.: A generalized exp-function method for fractional riccati differential equations. Commun. Fract. Calc. 1, 48–51 (2010)

    Google Scholar 

  • Zheng, B.: \((G^{\prime }/G)\)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58, 623–630 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zheng, B., Wen, C.: Exact solutions for fractional partial differential equations by a new fractional sub-equation method. Adv. Differ. Equ. 2013, 199 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozkan Guner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guner, O. New exact solutions to the space–time fractional nonlinear wave equation obtained by the ansatz and functional variable methods. Opt Quant Electron 50, 38 (2018). https://doi.org/10.1007/s11082-017-1311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1311-1

Keywords

Navigation