Skip to main content
Log in

Highly dispersive optical solitons in birefringent fibers with Lakshmanan–Porsezian–Daniel model having multiplicative white noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main emphasis of this paper is on soliton studies incorporating differential group delay, where, for the first time, the Lakshmanan–Porsezian–Daniel equation is employed in the presence of white noise. The model’s soliton solutions are effectively recovered using a new mapping method. Therefore, a complete range of solitons is revealed, highlighting that the influence of white noise remains localized to the phase component of the solitons along both vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33(5), 1807–1816 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ding, C.-C., Zhou, Q., Triki, H., Hu, Z.-H.: Interaction dynamics of optical dark bound solitons for a defocusing Lakshmanan–Porsezian–Daniel equation. Opt. Express 30(22), 40712–40727 (2022)

    Article  Google Scholar 

  3. Peng, C., Li, Z.: Optical soliton solutions for Lakshmanan–Porsezian–Daniel equation with parabolic law nonlinearity by trial function method. AIMS Math. 8(2), 2648–2658 (2023)

    Article  MathSciNet  Google Scholar 

  4. Wang, M., Chen, Y.: General multi-soliton and higher-order soliton solutions for a novel nonlocal Lakshmanan–Porsezian–Daniel equation. Nonlinear Dyn. 111, 655–669 (2023)

    Article  Google Scholar 

  5. Zhou, S., Wang, L., Zhao, J.-F., Sun, W.-R.: Nonlinear wave molecules for the Lakshmanan–Porsezian–Daniel equation in nonlinear optics and biology. Ann. Phys. 534(10), 2100545 (2022)

    Article  MathSciNet  Google Scholar 

  6. Abdelrahman, M.A.E., Mohammed, W.W., Alesemi, M., Albosaily, S.: The effect of multiplicative noise on the exact solutions of nonlinear Schrodinger equation. AIMS Math. 6, 2970–2980 (2021)

  7. Albosaily, S., Mohammed, W.W., Aiyashi, M.A., Abdelrahman, A.A.E.: Exact solutions of the (2+1)-dimensional stochastic chiral nonlinear Schrödinger equation. Symmetry 12, 1874–1886 (2020)

    Article  Google Scholar 

  8. Mohammed, W.W., Ahmad, H., Hamza, A.E., Aly, E.S., El-Morshedy, M., Elabbasy, E.M.: The exact solutions of the stochastic Ginzburg–Landau equation. Res. Phys. 23, 103988 (2021)

    Google Scholar 

  9. Mohammed, W.W., Ahmad, H., Boulares, H., Kheli, F., El-Morshedy, M.: Exact solutions of HirotaMaccari system forced by multiplicative noise in the Itô sense. J. Low Freq. Noise, Vib. Active Control (2021). https://doi.org/10.1177/14613484211028100

    Article  Google Scholar 

  10. Mohammed, W.W., Iqbal, N., Ali, A., El-Morshedy, M.: Exact solutions of the stochastic new coupled Konno–Oono equation. Res. Phys. 21, 103830 (2021)

    Google Scholar 

  11. Mohammed, W.W., El-Morshedy, M.: The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik–Novikov–Veselov system. Math. Comput. Simul. 190, 192–202 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mohammed, W.W., Albosaily, S., Iqbal, N., El-Morshedy, M.: The effect of multiplicative noise on the exact solutions of the stochastic Burger equation. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1905914

    Article  Google Scholar 

  13. Khan, S.: Stochastic perturbation of sub-pico second envelope solitons for Triki-Biswas equation with multi-photon absorption and bandpass lters. Optik 183, 174–178 (2019)

    Article  Google Scholar 

  14. Khan, S.: Stochastic perturbation of optical solitons having generalized anti-cubic nonlinearity with bandpass filters and multi-photon absorption. Optik 200, 163405 (2020)

    Article  Google Scholar 

  15. Khan, S.: Stochastic perturbation of optical solitons with quadratic-cubic nonlinear refractive index. Optik 212, 164706 (2021)

    Article  Google Scholar 

  16. Zeng, X., Yong, X.: A new mapping method and its applications to nonlinear partial differential equations. Phys. Lett. A 372, 6602–6607 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, W., Han, Z., Bridges, T.J., Qiao, Z.: Multi-symplectic simulations of W/M-shape-peaks solitons and cuspons for FORQ equation. Appl. Math. Lett. 145, 108772 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, W., Deng, Z., Han, S., Zhang, W.: Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. J. Comput. Phys. 235, 394–406 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, W., Xu, M., Zhang, F., Xiao, C., Deng, Z.: Dynamic analysis on flexible hub-beam with step-variable cross-section. Mech. Syst. Signal Process. 180, 109423 (2022)

    Article  Google Scholar 

  20. Hu, W., Zhang, C., Deng, Z.: Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs. Commun. Nonlinear Sci. Numer. Simul. 84, 105199 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, W., Ye, J., Deng, Z.: Internal resonance of a flexible beam in a spatial tethered system. J. Sound Vib. 475, 115286 (2020)

    Article  Google Scholar 

  22. Hu, W., Xu, M., Song, J., Gao, Q., Deng, Z.: Coupling dynamic behaviors of flexible stretching hub-beam system. Mech. Syst. Signal Process. 151, 107389 (2021)

    Article  Google Scholar 

  23. Hu, W., Huai, Y., Xu, M., Feng, X., Jiang, R., Zheng, Y., Deng, Z.: Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids. Mech. Syst. Signal Process. 159, 107833 (2021)

    Article  Google Scholar 

  24. Hu, W., Huai, Y., Xu, M., Deng, Z.: Coupling dynamic characteristics of simplified model for tethered satellite system. Acta. Mech. Sin. 37, 1245–1254 (2021)

    Article  MathSciNet  Google Scholar 

  25. Huai, Y., Hu, W., Song, W., Zheng, Y., Deng, Z.: Magnetic-field-responsive property of Fe3O4/polyaniline solvent-free nanofluid. Phys. Fluids 35, 012001 (2023)

    Article  Google Scholar 

  26. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3+ 1)-and (2+ 1)-dimensional Kadomtsev-Petviashvili equations. Nonlinear Dyn. 111, 3623–3632 (2023)

    Article  Google Scholar 

  27. Wazwaz, A.M.: Integrable (3+ 1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions. Nonlinear Dyn. 109, 1929–1934 (2022)

    Article  Google Scholar 

  28. Wazwaz, A.M.: Multi-soliton solutions for integrable (3+ 1)-dimensional modified seventh-order Ito and seventh-order Ito equations. Nonlinear Dyn. 110, 3713–3720 (2022)

    Article  Google Scholar 

  29. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Article  Google Scholar 

  30. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    Article  MATH  Google Scholar 

  31. Xu, G.Q., Wazwaz, A.M.: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dyn. 101, 581–595 (2020)

    Article  MATH  Google Scholar 

  32. Wazwaz, A.M., Xu, G.Q.: Kadomtsev–Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711–3716 (2020)

    Article  Google Scholar 

  33. Zhou, Q., Huang, Z., Sun, Y., Triki, H., Liu, W., Biswas, A.: Collision dynamics of three-solitons in an optical communication system with third-order dispersion and nonlinearity. Nonlinear Dyn. 111, 5757–5765 (2023)

    Article  Google Scholar 

  34. Zhou, Q., Xu, M., Sun, Y., Zhong, Y., Mirzazadeh, M.: Generation and transformation of dark solitons, anti-dark solitons and dark double-hump solitons. Nonlinear Dyn. 110, 1747–1752 (2022)

    Article  Google Scholar 

  35. Zhou, Q., Luan, Z., Zeng, Z., Zhong, Y.: Effective amplification of optical solitons in high power transmission systems. Nonlinear Dyn. 109, 3083–3089 (2022)

    Article  Google Scholar 

  36. Zhou, Q., Wang, T., Biswas, A., Liu, W.: Nonlinear control of logic structure of all-optical logic devices using soliton interactions. Nonlinear Dyn. 107, 1215–1222 (2022)

    Article  Google Scholar 

Download references

Funding

The authors have no funding support to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakup Yıldırım.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayed, E.M.E., Alngar, M.E.M., Shohib, R.M.A. et al. Highly dispersive optical solitons in birefringent fibers with Lakshmanan–Porsezian–Daniel model having multiplicative white noise. Nonlinear Dyn 111, 20237–20256 (2023). https://doi.org/10.1007/s11071-023-08935-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08935-4

Keywords

Navigation