Skip to main content
Log in

Nonlinear bending behavior of orthotropic Mindlin plate resting on orthotropic Pasternak foundation using GDQM

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Rectangular plates resting on elastic foundations are operational activities of large transportation aircraft on runways, footings, foundation of spillway dam, civil building in cold regions, and bridge structures. Hence, in the present work, nonlinear bending analysis of embedded rectangular plates is investigated based on orthotropic Mindlin plate theory. The elastic medium is simulated by orthotropic Pasternak foundation. Adopting the nonlinear strain–displacement relation, the governing equations are derived based on energy method and Hamilton’s principle. The generalized differential quadrature method is performed for the case when all four ends are clamped supported. The influences of the plate thickness, shear-locking, elastic medium constants, and applied force on the nonlinear bending of the rectangular plate are studied. Results indicate that increasing the plate thickness decreases the deflection of the plate. It is also observed that increasing the applied force increases the deflection of the plate. Furthermore, considering elastic medium decreases deflection of the plate, and the effect of the Pasternak-type is higher than the Winkler-type on the maximum deflection of the plate. Also, it is found that the present results have good agreement with previous researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mindlin, R.D.: Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  2. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 69–77 (1945)

    MathSciNet  Google Scholar 

  3. Knight Jr, N.F., Qi, Y.: On a consistent first-order shear-deformation theory for laminated plates. Composites Part B 28(4), 397–405 (1997)

    Article  Google Scholar 

  4. Fares, M.E.: Non-linear bending analysis of composite laminated plates using a refined first-order theory. Compos. Struct. 46, 257–266 (1999)

    Article  Google Scholar 

  5. Swaminathan, K., Ragounadin, D.: Analytical solutions using a higher-order refined theory for the static analysis of antisymmetric angle-ply composite and sandwich plates. Compos. Struct. 64, 405–417 (2004)

    Article  Google Scholar 

  6. Ferreira, A.J.M., Roque, C.M.C., Martins, P.A.L.S.: Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method. Composites Part B 34, 627–636 (2003)

    Article  Google Scholar 

  7. Zenkour, A.M.: Exact mixed-classical solutions for the bending analysis of shear deformable rectangular plates. Appl. Math. Model. 27, 515–534 (2003)

    Article  MATH  Google Scholar 

  8. Reddy, J.N.: A simple higher order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  9. Bezine, G.: A new boundary element method for bending of plates on elastic foundations. Int. J. Solids Struct. 24(6), 557–565 (1988)

    Article  MATH  Google Scholar 

  10. El-Zafrany, A., Fadhil, S., Al-Hosani, K.: A new fundamental solution for boundary element analysis of this plates on Winkler foundation. Int. J. Numer. Methods Eng. 38, 887–903 (1995)

  11. Zhang, W., Yang, J., Hao, Y.: Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dyn. 59(4), 619–660 (2010)

    Article  MATH  Google Scholar 

  12. Alijani, F., Bakhtiari-Nejad, F., Amabili, M.: Nonlinear vibrations of FGM rectangular plates in thermal environments. Nonlinear Dyn. 66(3), 251–270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Choudhary, S.S., Tungikar, V.B.: A simple finite element for nonlinear analysis of composite plates. Int. J. Eng. Sci. Technol. 3, 4897–4907 (2011)

    Google Scholar 

  14. Ponnusamy, P., Selvamani, R.: Wave propagation in a generalized thermo elastic plate embedded in elastic medium. Interact. Multiscale Mech. 5(1), 13–26 (2012)

    Article  Google Scholar 

  15. Reddy, B.S., Reddy, A.R., Kumar, J.S., Reddy, K.V.K.: Bending analysis of laminated composite plates using finite element method. Int. J. Eng. Sci. Technol. 4(2), 177–190 (2012)

    Article  Google Scholar 

  16. Dash, P., Singh, B.N.: Geometrically nonlinear bending analysis of laminated composite plate. Commun. Nonlinear Sci. Numer. Simul. 15, 3170–3181 (2010)

    Article  Google Scholar 

  17. Pasternak, P.L.: New Method Calculation for Flexible Substructures on Two Parameter Elastic Foundation, pp. 1–56. Gosudarstvennogo Izdatelstoo, Literatury po Stroitelstvu i Architekture, Moskau (1954)

  18. Buczkowski, R., Torbacki, W.: Finite element modelling of thick plates on two-parameter elastic foundation. Int. J. Numer. Anal. Methods Geomech. 25, 1409–1427 (2001)

    Article  MATH  Google Scholar 

  19. Chucheepsakul, S., Chinnaboon, B.: Plates on two-parameter elastic foundations with nonlinear boundary conditions by the boundary element method. Comput. Struct. 81, 2739–2748 (2003)

    Article  Google Scholar 

  20. Sladek, J., Sladek, V., Mang, H.A.: Meshless local boundary integral equation method for simply supported and clamped plates resting on elastic foundation. Comput. Methods. Appl. Mech. Eng. 191(51), 5943–5959 (2002)

    Article  MATH  Google Scholar 

  21. Civalek, Ö., Acar, M.H.: Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int. J. Press. Vessels. Pip. 84, 527–535 (2007)

    Article  Google Scholar 

  22. Zenkour, A.M.: The refined sinusoidal theory for FGM plates on elastic foundations. Int. J. Mech. Sci. 51, 869–880 (2009)

    Article  Google Scholar 

  23. Civalek, Ö.: A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates. Appl. Math. Model. 33, 300–314 (2009)

  24. Akhavan, H., Hosseini Hashemi, Sh., Rokni Damavandi Taher, H., Alibeigloo, A., Vahabi, Sh.: Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis. Comput. Mater. Sci. 44, 968–978 (2009a)

  25. Akhavan, H., Hosseini Hashemi, Sh., Rokni Damavandi Taher, H., Alibeigloo, A., Vahabi, Sh.: Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis. Comput. Mater. Sci. 44, 951–961 (2009b)

  26. Baltacıoğlu, A.K., Civalek, Ö., Akgöz, B., Demir, F.: Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution. Int. J. Press. Vessels. Pip. 88, 290–300 (2011)

    Article  Google Scholar 

  27. Ansari, R., Hemmatnezhad, M.: Nonlinear vibrations of embedded multi-walled carbon nanotubes using a variational approach. Math. Comput. Model. 53, 927–938 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ansari, R., Hemmatnezhad, M.: Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes. Nonlinear Dyn. 67, 373–383 (2012)

    Article  MathSciNet  Google Scholar 

  29. Heydari, M.M., Kolahchi, R., Heydari, M., Abbasi, A.: Exact solution for transverse bending analysis of embedded laminated Mindlin plate. Struct. Eng. Mech. 49(5), 661–672 (2014)

    Article  Google Scholar 

  30. Datta, S.: Large deflection of a circular plate on elastic foundation under symmetrical load. J. Struct. Mech. 3, 331–343 (1975)

    Article  Google Scholar 

  31. Dumir, P.C.: Circular plates on Pasternak elastic foundations. Int. J. Numer. Anal. Methods Geomech. 11, 51–60 (1987)

    Article  MATH  Google Scholar 

  32. Dumir, P.C.: Large deflection axisymmetric analysis of orthotropic annular plates on elastic foundations. Int. J. Solid. Struct. 24, 777–787 (1988)

    Article  Google Scholar 

  33. Dumir, P.C., Bhaskar, A.: Nonlinear static analysis of rectangular plates on elastic foundations by the orthogonal point collocation method. Comput. Methods Appl. Mech. Eng. 67, 111–124 (1988)

    Article  MATH  Google Scholar 

  34. Civalek, Ö.: Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation. J. Sound Vib. 294, 966–980 (2006)

    Article  Google Scholar 

  35. Wu, S., Qu, Y., Hua, H.: Free vibration of laminated orthotropic conical shell on Pasternak foundation by a domain decomposition method. J. Compos. Mater. (2013). doi:10.1177/0021998313514259

  36. Zhang, W., Lu, S.F., Yang, X.D.: Analysis on nonlinear dynamics of a deploying composite laminated cantilever plate. Nonlinear Dyn. 76, 69–93 (2014)

    Article  MathSciNet  Google Scholar 

  37. Kutlu, A., Omurtag, M.H.: Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method. Int. J. Mech. Sci. 65, 64–74 (2012)

    Article  Google Scholar 

  38. Yas, M.H., Sobhani, B.: Free vibration analysis of continuous grading fiber reinforced plates on elastic foundation. Int. J. Eng. Sci. 48, 1881–1895 (2010)

    Article  MATH  Google Scholar 

  39. Samaei, A.T., Abbasion, S., Mirsayar, M.M.: Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory. Mech. Res. Commun. 38, 481–485 (2011)

  40. Khajeansari, A., Baradaran, G.H., Yvonnet, J.: An explicit solution for bending of nanowires lying on Winkler–Pasternak elastic substrate medium based on the Euler–Bernoulli beam theory. Int. J. Eng. Sci. 52, 115–128 (2012)

    Article  Google Scholar 

  41. Civalek, Ö.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26, 171–186 (2004)

    Article  Google Scholar 

  42. Chen, W.: Differential Quadrature Method and its Applications in Engineering. Department of Mechanical Engineering, Shanghai Jiao Tong University (1996)

  43. Shu, C.: Differential Quadrature and its Application in Engineering. Springer, London (1999)

    Google Scholar 

  44. Akavci, S.S., Yerli, H.R., Dogan, A.: The first order shear deformation theory for symmetrically laminated composite plates on elastic foundation. Arab. J. Sci. Eng. 32(2), 341–348 (2007)

  45. Timoshenko, S.P., Woinowsky-Krieger, W.: Theory of Plates and Shells. McGraw-Hill, New-York (1970)

    Google Scholar 

  46. Buczkowski, R., Torbacki, W.: Finite element modeling of thick plates on two-parameter elastic foundation. Int. J. Numer. Anal. Methods Geomech. 25, 1409–1427 (2001)

    Article  MATH  Google Scholar 

  47. Lee, S.W., Wong, C.: Mixed formulation finite elements for Mindlin theory plate bending. Int. J. Numer. Anal. Methods Eng. 18, 1297–1311 (1982)

    Article  MATH  Google Scholar 

  48. Auricchio, F., Taylor, R.L.: A triangular thick plate finite element with an exact thin limit. Finite Elem. Anal. Des. 19, 57–68 (1995)

    Article  MATH  Google Scholar 

  49. Lovadina, C.: Analysis of a mixed finite element method for the Reissner–Mindlin plate problems. Comput. Methods Appl. Mech. Eng. 163, 71–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Senjanovi’c, I., Vladimir, N., Tomi’c, M.: An advanced theory of moderately thick plate vibrations. J. Sound Vib. 332(7), 1868–1880 (2013)

    Article  Google Scholar 

  51. Senjanovi’c, I., Vladimir, N., Hadži’c, N.: Modified Mindlin plate theory and shear locking-free finite element formulation. Mech. Res. Commun. 55, 95–104 (2014)

    Article  Google Scholar 

  52. Bui, T.Q., Nguyen, M.N., Zhang, Ch.: Buckling analysis of Reissner–Mindlin plates subjected to in-plane edge loads using a shear-locking-free and mesh free method. Eng. Anal. Boundary Elem. 35, 1038–1053 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Heydari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, M.M., Nabi, A.H. & Heydari, M. Nonlinear bending behavior of orthotropic Mindlin plate resting on orthotropic Pasternak foundation using GDQM. Nonlinear Dyn 78, 1645–1657 (2014). https://doi.org/10.1007/s11071-014-1545-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1545-4

Keywords

Navigation