Skip to main content
Log in

Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The large-amplitude free vibration analysis of double-walled carbon nanotubes embedded in an elastic medium is investigated by means of a finite element formulation. A double-beam model is utilized in which the governing equations of layers are coupled with each other via the van der Waals interlayer forces. Von-Karman type nonlinear strain-displacement relationships are employed where the ends of the nanotube are constrained to move axially. The amplitude-frequency response curves for large-amplitude free vibrations of single-walled and double-walled carbon nanotubes with arbitrary boundary conditions are graphically illustrated. The effects of material constant of the surrounding elastic medium and the geometric parameters on the vibration characteristics are investigated. For a double-walled carbon nanotube with different boundary conditions between inner and outer tubes, the nonlinear frequencies are obtained apparently for the first time. Comparison of the results with those from the open literature is made for the amplitude-frequency curves where possible. This comparison illustrates that the present scheme yields very accurate results in predicting the nonlinear frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S.: Helica microtubes of graphitic carbon. Nature 354, 56 (1991)

    Article  Google Scholar 

  2. Avouris, P., Appenzeller, J., Martel, R., Wind, S.J.: Carbon nanotube electronics. Proc. IEEE 91(11), 1772–1784 (2003)

    Article  Google Scholar 

  3. Tsukagoshi, K., Yoneya, N., Uryu, S., Aoyagi, Y., Kanda, A., Ootuka, Y., Alphenaar, B.W.: Carbon nanotube devices for electronics. Physica B 323(1–4), 107–114 (2002)

    Article  Google Scholar 

  4. Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002)

    Article  Google Scholar 

  5. Choi, W.B., Bae, E., Kang, D., Chae, S., Cheong, B., Ko, J.: Aligned carbon nanotubes for nanoelectronics. Nanotechnology 15, 512–516 (2004)

    Article  Google Scholar 

  6. Baughman, R.H., et al.: Carbon nanotubes actuators. Science 284, 1340–1344 (1999)

    Article  Google Scholar 

  7. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)

    Article  Google Scholar 

  8. Yang, W., Ma, X.L., Wang, H.T., Hong, W.: The advancement of nanomechanics (continued). Adv. Mech. 33(2), 175–185 (2003)

    Google Scholar 

  9. Lau, K.T., Chipara, M., Ling, H.Y., Hui, D.: On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Composites B 35, 95–101 (2004)

    Article  Google Scholar 

  10. Ru, C.Q.: Elastic models for carbon nanotubes. In: Encyclopedia of Nanoscience and Nanotechnology, vol. X, pp. 1–14 (2003)

    Google Scholar 

  11. Yang, W., Ma, X.L., Wang, H.T., Hong, W.: The advancement of nanomechanics (continued). Adv. Mech. 33(2), 175–185 (2003)

    Google Scholar 

  12. Iilima, S., Brabec, C., Maiti, A., Bernholc, J.: Structural flexibility of carbon nanotube. Chem. Phys. 104, 2089 (1996)

    Google Scholar 

  13. Wong, E.W., Sheehan, P.W., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997)

    Article  Google Scholar 

  14. Salvetal, J.P., Briggs, G.A.D., Bonard, J.M., Bacsa, R.R., Kulik, A.J., Stockli, T., Burnham, N.A., Forro, L.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944 (1999)

    Article  Google Scholar 

  15. Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Lett. A 76, 14 (2000)

    Google Scholar 

  16. Lourie, O., Cox, D.M., Wagner, H.D.: Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638 (1998)

    Article  Google Scholar 

  17. Srivastava, D., Menon, M., Cho, K.: Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys. Rev. Lett. 83, 2973 (1999)

    Article  Google Scholar 

  18. Ozaki, T., Iwasa, Y., Mitani, T.: Stiffness of single-walled carbon nanotubes under large strain. Phys. Rev. Lett. 84, 1712 (2000)

    Article  Google Scholar 

  19. Ru, C.Q.: Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J. Appl. Phys. 87, 1712–1715 (2000)

    Article  Google Scholar 

  20. Ru, C.Q.: Effective bending stiffness of carbon nanotubes. Phys. Rev. B 62, 9973–9976 (2000)

    Article  Google Scholar 

  21. Ru, C.Q.: Elastic buckling of single-walled carbon nanotubes ropes under high pressure. Phys. Rev. B 62, 10405–10408 (2000)

    Article  Google Scholar 

  22. Li, R., Kardomateas, G.A.: Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity. ASME J. Appl. Mech. 74, 399–405 (2007)

    Article  MATH  Google Scholar 

  23. Govindjee, S., Sackman, J.L.: On the use of continuum mechanics to estimate the properties of nanotubes. Solid State Commun. 110, 227–230 (1999)

    Article  Google Scholar 

  24. Poncharal, P., Wang, Z.L., Ugarte, D., De Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  25. Ru, C.Q.: Column buckling of multiwall carbon nanotubes with interlayer radial displacements. Phys. Rev. B 62, 16962–16967 (2000)

    Article  Google Scholar 

  26. Yoon, J., Ru, C.Q., Mioduchowski, A.: Non-coaxial resonance of an isolated multiwall carbon nanotube. Phys. Rev. B 66, 233402-14 (2002)

    Google Scholar 

  27. Yoon, J., Ru, C.Q., Mioduchowski, A.: Vibration of an embedded multiwalled carbon nanotube. Compos. Sci. Technol. 63, 1533–1542 (2003)

    Article  Google Scholar 

  28. Yoon, J., Ru, C.Q., Mioduchowski, A.: Timoshenko-beam effects on transverse wave propagation in carbon nanotubes. Composites B 35, 87–93 (2004)

    Article  Google Scholar 

  29. Yoon, J., Ru, C.Q., Mioduchowski, A.: Terahertz vibration of short carbon nanotubes modeled as Timoshenko-beams. ASME J. Appl. Mech. 72, 10–17 (2005)

    Article  MATH  Google Scholar 

  30. Hsu, J.C., Chang, R.P., Chang, W.J.: Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory. Phys. Lett. A 372, 2757–2759 (2008)

    Article  MATH  Google Scholar 

  31. Wang, L., Ni, Q.: On vibration and instability of carbon nanotubes conveying fluid. Comput. Mater. Sci. 43, 399–402 (2008)

    Article  Google Scholar 

  32. Gibson, R.F., Ayorinde, E.O., Wen, Y.F.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 1–28 (2007)

    Article  Google Scholar 

  33. Fu, Y.M., Hong, J.W., Wang, X.Q.: Analysis of nonlinear vibration for embedded carbon nanotubes. J. Sound Vib. 296, 746–756 (2006)

    Article  Google Scholar 

  34. Ansari, R., Hemmatnezhad, M., Ramezannezhad, H.: Application of HPM to the nonlinear vibrations of multiwalled carbon nanotubes. Numer. Methods Partial Differ. Equ. 26, 490–500 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Singh, G., Raju, K.K., Venkateswara Rao, G., Iyenger, N.G.R.: Non-linear vibrations of simply supported rectangular cross-ply plates. J. Sound Vib. 142, 213–226 (1990)

    Article  Google Scholar 

  36. Singh, G., Venkateswara Rao, G., Iyenger, N.G.R.: Reinvestigation of large amplitude free vibrations of beams using finite elements. J. Sound Vib. 143(2), 351–355 (1990)

    Article  Google Scholar 

  37. Sundaresan, P., Singh, G., Venkateswara Rao, G.: A Simple approach to investigate vibratory behavior of thermally stressed laminated structures. J. Sound Vib. 219(4), 603–618 (1999)

    Article  Google Scholar 

  38. Xu, K.Y., Aifantis, E.C., Yan, Y.H.: Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes. ASME J. Appl. Mech. 75, 021013-9 (2008)

    Google Scholar 

  39. Lanir, Y., Fung, Y.C.B.: Fiber composite columns under compressions. J. Compos. Mater. 6, 387–401 (1972)

    Google Scholar 

  40. Hahn, H.T., Williams, J.G.: Compression failure mechanisms in unidirectional composites. Compos. Mater.-Test. Des. 7, 115–139 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, R., Hemmatnezhad, M. Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes. Nonlinear Dyn 67, 373–383 (2012). https://doi.org/10.1007/s11071-011-9985-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9985-6

Keywords

Navigation