Skip to main content
Log in

Analysis on nonlinear dynamics of a deploying composite laminated cantilever plate

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the analysis on the nonlinear dynamics of a deploying orthotropic composite laminated cantilever rectangular plate subjected to the aerodynamic pressures and the in-plane harmonic excitation. The third-order nonlinear piston theory is employed to model the transverse air pressures. Based on Reddy’s third-order shear deformation plate theory and Hamilton’s principle, the nonlinear governing equations of motion are derived for the deploying composite laminated cantilever rectangular plate. The Galerkin method is utilized to discretize the partial differential governing equations to a two-degree-of-freedom nonlinear system. The two-degree-of-freedom nonlinear system is numerically studied to analyze the stability and nonlinear vibrations of the deploying composite laminated cantilever rectangular plate with the change of the realistic parameters. The influences of different parameters on the stability of the deploying composite laminated cantilever rectangular plate are analyzed. The numerical results show that the deploying velocity and damping coefficient have great effects on the amplitudes of the nonlinear vibrations, which may lead to the jumping phenomenon of the amplitudes for first-order and second-order modes. The increase of the damping coefficient can suppress the increase of the amplitudes of the nonlinear vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tabarrok, B., Leech, C.M., Kim, Y.I.: On the dynamics of an axially moving beam. J. Franklin Inst. 297, 201–220 (1974)

    Article  MATH  Google Scholar 

  2. Taleb, I.A., Misra, A.K.: Dynamics of an axially moving beam submerged in a fluid. J. Hydronaut. 15, 62–66 (1981)

    Article  Google Scholar 

  3. Wang, P.K.C., Wei, J.D.: Vibration in a moving flexible robot arm. J. Sound Vib. 116, 149–160 (1987)

    Article  Google Scholar 

  4. Matsuzaki, Y., Torii, H., Toyama, M.: Vibration of a cantilevered beam during deployment and retrieval: analysis and experiment. Smart Mater. Struct. 4, 334–339 (1995)

    Article  Google Scholar 

  5. Theodore, R.J., Arakeri, J.H., Ghosal, A.: The modelling of axially translating flexible beams. J. Sound Vib. 191, 363–376 (1996)

    Article  Google Scholar 

  6. Fung, R.F., Lu, P.Y., Tseng, C.C.: Non-linearly dynamic modelling of an axially moving beam with a tip mass. J. Sound Vib. 218, 559–571 (1998)

    Article  Google Scholar 

  7. Behdinan, K., Stylianou, M., Tabarrok, B.: Dynamics of flexible sliding beams non-linear analysis. Part I: formulation. J. Sound Vib. 208, 517–539 (1997)

    Article  Google Scholar 

  8. Behdinan, K., Tabarrok, B.: Dynamics of flexible sliding beams—non-linear analysis, part II: transient response. J. Sound Vib. 208, 541–565 (1997)

    Article  Google Scholar 

  9. Imanishi, E., Sugano, N.: Vibration control of cantilever beams moving along the axial direction. JSME Int. J. Ser. C, Dyn. Control Robot. Des. Manuf. 46, 527–532 (2003)

    Article  Google Scholar 

  10. Liu, K., Deng, L.: Identification of pseudo-natural frequencies of an axially moving cantilever beam using a subspace-based algorithm. Mech. Syst. Signal Process. 20, 94–113 (2006)

    Article  Google Scholar 

  11. Gosselin, F., Paidoussis, M.P., Misra, A.K.: Stability of a deploying/extruding beam in dense fluid. J. Sound Vib. 299, 123–142 (2007)

    Article  Google Scholar 

  12. Xu, G.Y., Zhu, W.D.: Nonlinear and time-varying dynamics of high-dimensional models of a translating tensioned beam with a stationary load subsystem. J. Vib. Acoust. 132, 061012 (2010)

    Article  Google Scholar 

  13. Chen, L.H., Zhang, W., Yang, F.H.: Nonlinear dynamics of higher-dimensional system for an axially accelerating viscoelastic beam with in-plane and out-of-plane vibrations. J. Sound Vib. 329, 5321–5345 (2010)

    Article  Google Scholar 

  14. Yang, X.D., Chen, L.Q.: Bifurcation and chaos of an axially accelerating viscoelastic beam. Chaos Solitons Fractals 23, 249–258 (2005)

    Article  MATH  Google Scholar 

  15. Poivan, M.T., Sampaio, R.: Vibrations of axially moving flexible beams made of functionally graded materials. Thin-Walled Struct. 46, 112–121 (2008)

    Article  Google Scholar 

  16. Chang, J.R., Lin, W.J., Huang, C.J., Choi, S.T.: Vibration and stability of an axially moving Rayleigh beam. Appl. Math. Model. 34, 1482–1497 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, L.H., Hu, Z.D., Zhong, Z., Ju, J.W.: Hamiltonian dynamic analysis of an axially translating beam featuring time-variant velocity. Acta Mech. 206, 149–161 (2009)

    Article  MATH  Google Scholar 

  18. Wang, L.H., Hu, Z.D., Zhong, Z.: Dynamic analysis of an axially translating plate with time-variant length. Acta Mech. 215, 9–23 (2010)

    Article  MATH  Google Scholar 

  19. Yang, X.D., Zhang, W., Chen, L.Q., Yao, M.H.: Dynamical analysis of axially moving plate by finite difference method. Nonlinear Dyn. 67, 997–1006 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, W., Sun, L., Yang, X.D., Jia, P.: Nonlinear dynamic behaviors of a deploying-and-retreating wing with varying velocity. J. Sound Vib. 332, 6785–6797 (2013)

    Article  Google Scholar 

  21. Park, S., Yoo, H.H., Chung, J.: Vibrations of an axially moving beam with deployment or retraction. AIAA J. 51, 686–696 (2013)

    Article  Google Scholar 

  22. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, pp. 671–676. CRC Press, Boca Raton (2004)

    Google Scholar 

  23. Nosir, A., Reddy, J.N.: A study of non-linear dynamic equations of higher-order deformation plate theories. Int. J. Non-Linear Mech. 26, 233–249 (1991)

    Article  Google Scholar 

  24. Reddy, J.N.: Geometrically nonlinear transient analysis of laminated composite plates. AIAA J. 21, 621–629 (1983)

    Article  MATH  Google Scholar 

  25. Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  26. Cederbaum, G.: On the parametric instability of laminated plates modeled within a high-order shear-deformation theory. Acta Mech. 91, 179–191 (1992)

    Article  MATH  Google Scholar 

  27. Zhang, W., Zhao, M.H.: Nonlinear vibrations of a composite laminated cantilever rectangular plate with one-to-one internal resonance. Nonlinear Dyn. 70, 295–313 (2012)

    Article  MATH  Google Scholar 

  28. Zhang, W., Zhao, M.H., Guo, X.Y.: Nonlinear responses of a symmetric cross-ply composite laminated cantilever rectangular plate under in-plane and moment excitations. Compos. Struct. 100, 554–565 (2013)

    Article  Google Scholar 

  29. Zhang, W., Yao, Z.G., Yao, M.H.: Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance. Sci. China, Ser. E Technol. Sci. 52, 731–742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo, X.Y., Zhang, W., Yao, M.H.: Nonlinear dynamics of angle-ply composite laminated thin plate with third-order shear deformation. Sci. China, Technol. Sci. 53, 612–622 (2010)

    Article  MATH  Google Scholar 

  31. Amabili, M., Farhadi, S.: Shear deformable versus classical theories for nonlinear vibrations of rectangular isotropic and laminated composite plates. J. Sound Vib. 320, 649–667 (2009)

    Article  Google Scholar 

  32. Amabili, M., Karazis, K., Khorshidi, K.: Nonlinear vibrations of rectangular laminated composite plates with different boundary conditions. Int. J. Struct. Stab. Dyn. 11, 673–695 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ashley, H., Zartarian, G.: Piston theory—a new aerodynamic tool for the aeroelastician. J. Aeronaut. Sci. 23, 1109–1118 (1956)

    Article  MathSciNet  Google Scholar 

  34. Rao, V.M., Behal, A., Marzocca, P., Rubillo, C.M.: Adaptive aeroelastic vibration suppression of a supersonic airfoil with flap. Aerosp. Sci. Technol. 10, 309–315 (2006)

    Article  MATH  Google Scholar 

  35. Navazi, H.M., Haddadpour, H.: Aero-thermoelastic stability of functionally graded plates. Compos. Struct. 80, 580–587 (2007)

    Article  Google Scholar 

  36. Chandiramani, N.K., Librescu, L.I., Plaut, R.H.: Flutter of geometrically-imperfect shear-deformable laminated flat panels using non-linear aerodynamics. J. Sound Vib. 192, 79–100 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support of the National Natural Science Foundation of China (NNSFC) through Grant Nos. 11290152 and 11072008, the Funding Project for Academic Human Resources Development in Institutions of higher learning under the Jurisdiction of Beijing Municipality (PHRIHLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Appendices

Appendix A

Letting \(\alpha = \pi^{2}( \frac{E}{l_{0}b\rho} )^{1 / 2}\), the coefficients of the non-dimensional equation (15) are given as follows:

$$\begin{aligned} &{a_{10} = 1,\quad a_{11} = \frac{\bar{A}_{66}}{\bar{A}_{11}} \frac{l_{0}^{2}}{b^{2}},} \\ &{a_{12} = \frac{\bar{A}_{12} + \bar{A}_{66}}{\bar{A}_{11}},\quad a_{13} = \frac{\bar{A}_{12} + \bar{A}_{66}}{\bar{A}_{11}}\frac{h^{2}}{b^{2}},} \\ &{a_{14} = \frac{h^{2}}{l_{0}^{2}},\quad a_{15} = \frac{\bar{A}_{66}}{\bar{A}_{11}}\frac{h^{2}}{b^{2}},} \\ &{a_{16} = - \frac{\bar{I}_{0}}{\bar{A}_{11}}l_{0}^{2} \alpha^{2}\frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}},\qquad a_{17} = \frac{\bar{I}_{0}}{\bar{A}_{11}}l_{0}^{2}\alpha^{2},} \\ &{a_{18} = \frac{\bar{I}_{1} - \bar{c}_{1}\bar{I}_{3}}{\bar{A}_{11}}l_{0} \alpha^{2},\quad a_{19} = - \frac{\bar{c}_{1}\bar{I}_{3}}{\bar{A}_{11}}h \alpha^{2}.} \\ &{b_{10} = 1,\quad b_{11} = \frac{\bar{A}_{66}}{\bar{A}_{22}} \frac{b^{2}}{l_{0}^{2}},\quad b_{12} = \frac{\bar{A}_{12} + \bar{A}_{66}}{\bar{A}_{22}},} \\ &{ b_{13} = \frac{\bar{A}_{12} + \bar{A}_{66}}{\bar{A}_{22}}\frac{h^{2}}{l_{0}^{2}},\quad b_{14} = \frac{h^{2}}{b^{2}},} \\ &{b_{15} = \frac{\bar{A}_{66}}{\bar{A}_{22}}\frac{h^{2}}{l_{0}^{2}},\quad b_{16} = \frac{\bar{I}_{0}}{\bar{A}_{22}}b^{2}\alpha^{2},} \\ &{b_{17} = \frac{\bar{I}_{1} - \bar{c}_{1}\bar{I}_{3}}{\bar{A}_{22}}b\alpha^{2},\quad b_{18} = - \frac{\bar{c}_{1}\bar{I}_{3}}{\bar{A}_{22}}h\alpha^{2}.} \end{aligned}$$
(21)

Letting \(\lambda_{1} = \bar{A}_{55} - \bar{c}_{2}\bar{D}_{55} + \bar{c}_{2}^{2}\bar{F}_{55}\), we have

$$\begin{aligned} &{c_{10} = 1,\quad c_{11} = \frac{\bar{A}_{44} - 2\bar{c}_{2}\bar{D}_{44} + \bar{c}_{2}^{2}\bar{F}_{44}}{\lambda_{1}} \frac{l_{0}^{2}}{b^{2}} - \frac{f_{y}}{\lambda_{1}}\frac{l_{0}^{2}}{b^{2}},} \\ &{c_{12} = \frac{\bar{A}_{11}}{\lambda_{1}},\quad c_{13} = \frac{\bar{A}_{21}}{\lambda_{1}},\quad c_{14} = \frac{2\bar{A}_{66}}{\lambda_{1}} \frac{l_{0}^{2}}{b^{2}},} \\ &{c_{15} = \frac{\bar{A}_{11}}{\lambda_{1}},\quad c_{16} = \frac{\bar{A}_{66}}{\lambda_{1}},\quad c_{17} = \frac{\bar{A}_{21} + \bar{A}_{66}}{\lambda_{1}} \frac{l_{0}^{2}}{b^{2}},} \\ &{c_{18} = \frac{\bar{A}_{12} + \bar{A}_{66}}{\lambda_{1}},\quad c_{19} = \frac{\bar{A}_{22}}{\lambda_{1}}\frac{l_{0}^{2}}{b^{2}},\quad c_{20} = \frac{\bar{A}_{12}}{\lambda_{1}},} \\ &{c_{21} = \frac{\bar{A}_{22}}{\lambda_{1}}\frac{l_{0}^{2}}{b^{2}},\quad c_{22} = \frac{2\bar{A}_{66}}{\lambda_{1}},\quad c_{23} = \frac{\bar{A}_{66}}{\lambda_{1}}\frac{l_{0}^{2}}{b^{2}},} \\ &{c_{24} = \frac{3}{2}\frac{\bar{A}_{11}}{\lambda_{1}} \frac{h^{2}}{l_{0}^{2}},\quad c_{25} = \frac{\frac{1}{2}\bar{A}_{21} + \bar{A}_{66}}{\lambda_{1}} \frac{h^{2}}{b^{2}},} \\ &{c_{26} = \frac{\frac{1}{2}\bar{A}_{12} + \bar{A}_{66}}{\lambda_{1}}\frac{h^{2}}{b^{2}},\quad c_{27} = \frac{3\bar{A}_{22}}{2\lambda_{1}}\frac{l_{0}^{2}h^{2}}{b^{4}},} \\ &{c_{28} = \frac{\bar{A}_{12} + \bar{A}_{21} + 4\bar{A}_{66}}{\lambda_{1}}\frac{h^{2}}{b^{2}},} \\ &{c_{29} = \frac{\bar{A}_{55} - 2\bar{c}_{2}\bar{D}_{55} + \bar{c}_{2}^{2}\bar{F}_{55}}{\lambda_{1}}\frac{l_{0}}{h},} \\ &{c_{30} = \frac{\bar{A}_{44} - 2\bar{c}_{2}\bar{D}_{44} + \bar{c}_{2}^{2}\bar{F}_{44}}{\lambda_{1}}\frac{l_{0}^{2}}{bh},} \end{aligned}$$
(22)
$$\begin{aligned} &{c_{31} = \frac{\bar{F}_{11}\bar{c}_{1} - \bar{H}_{11}\bar{c}_{1}^{2}}{\lambda_{1}}\frac{1}{l_{0}h},} \\ &{c_{32} = \frac{\bar{F}_{22}\bar{c}_{1} - \bar{H}_{22}\bar{c}_{1}^{2}}{\lambda_{1}}\frac{l_{0}^{2}}{hb^{3}},} \\ &{c_{33} = - \frac{\bar{c}_{1}^{2}\bar{H}_{11}}{\lambda_{1}}\frac{1}{l_{0}^{2}},\quad c_{34} = - \frac{\bar{c}_{1}^{2}\bar{H}_{22}}{\lambda_{1}}\frac{l_{0}^{2}}{b^{4}},} \\ &{c_{35} = \frac{\bar{c}_{1}\bar{F}_{12} + 2\bar{c}_{1}\bar{F}_{66} - \bar{H}_{12}\bar{c}_{1}^{2} - 2\bar{H}_{66}\bar{c}_{1}^{2}}{\lambda_{1}}\frac{1}{hb},} \\ &{c_{36} = \frac{\bar{c}_{1}\bar{F}_{21} + 2\bar{c}_{1}\bar{F}_{66} - \bar{H}_{21}\bar{c}_{1}^{2} - 2\bar{H}_{66}\bar{c}_{1}^{2}}{\lambda_{1}}\frac{l_{0}}{hb^{2}},} \\ &{c_{37} = - \frac{\bar{c}_{1}^{2}(\bar{H}_{12} + \bar{H}_{21} + 4\bar{H}_{66})}{\lambda_{1}}\frac{1}{b^{2}},} \\ &{c_{38} = - \frac{4q_{d}\gamma l_{0}^{2}\alpha}{\lambda_{1}M_{\infty} v}\frac{\mathrm{d}x}{\mathrm{d}t},} \\ &{c_{39} = - \frac{4q_{d}\gamma l_{0}^{2}}{\lambda_{1}M_{\infty} b},\quad c_{40} = - \frac{4q_{d}\gamma l_{0}^{2}\alpha}{\lambda_{1}M_{\infty} v} - \frac{\delta}{ \lambda_{1}}l_{0}^{2}\alpha,} \\ &{c_{41} = - \frac{q_{d}( \kappa + 1 )\gamma^{3}M_{\infty}}{3\lambda_{1}}\frac{l_{0}^{2}}{h},\quad c_{42} = \frac{h\alpha}{v}\frac{\mathrm{d}x}{\mathrm{d}t},} \\ &{c_{43} = \frac{h}{b},\quad c_{44} = \frac{h\alpha}{v},\quad c_{45} = \frac{\bar{I}_{0}l_{0}^{2}}{\lambda_{1}} \alpha^{2},} \\ &{ c_{46} = - \frac{\bar{c}_{1}^{2}\bar{I}_{6}}{\lambda_{1}}\alpha^{2},\quad c_{47} = - \frac{\bar{c}_{1}^{2}\bar{I}_{6}}{\lambda_{1}}\frac{l_{0}^{2}}{b^{2}}\alpha^{2},} \\ &{c_{48} = \frac{\bar{c}_{1}\bar{I}_{3}}{\lambda_{1}}\frac{l_{0}^{2}}{h} \alpha^{2},\quad c_{49} = \frac{\bar{c}_{1}\bar{I}_{4} - \bar{c}_{1}^{2}\bar{I}_{6}}{\lambda_{1}} \frac{l_{0}}{h}\alpha^{2},} \\ &{c_{50} = \frac{\bar{c}_{1}\bar{I}_{4} - \bar{c}_{1}^{2}\bar{I}_{6}}{\lambda_{1}}\frac{l_{0}^{2}}{bh} \alpha^{2}.} \end{aligned}$$

Letting \(\lambda_{2} = \bar{D}_{11} - 2\bar{r}_{1}\bar{F}_{11} + \bar{r}_{1}^{2}\bar{H}_{11}\), we have

$$\begin{aligned} &{d_{10} = 1,\quad d_{11} = \frac{\bar{D}_{66} - 2\bar{c}_{1}\bar{F}_{66} + \bar{c}_{1}^{2}\bar{H}_{66}}{\lambda_{2}} \frac{l_{0}^{2}}{b^{2}},} \\ &{d_{12} = \frac{\bar{c}_{1}^{2}\bar{H}_{11} - \bar{c}_{1}\bar{F}_{11}}{\lambda_{2}}\frac{h}{l},} \\ &{ d_{13} = \frac{\bar{D}_{12} - 2\bar{c}_{1}\bar{F}_{12} + \bar{D}_{66} - 2\bar{c}_{1}\bar{F}_{66} + \bar{c}_{1}^{2}\bar{H}_{12} + \bar{c}_{1}^{2}\bar{H}_{66}}{\lambda_{2}}\frac{l_{0}}{b},} \\ &{d_{14} = \frac{2\bar{c}_{2}\bar{D}_{55} - \bar{A}_{55} - \bar{c}_{2}^{2}\bar{F}_{55}}{\lambda_{2}}l_{0}h,} \\ &{ d_{15} = \frac{ - \bar{c}_{1}\bar{F}_{12} - 2\bar{c}_{1}\bar{F}_{66} + \bar{c}_{1}^{2}\bar{H}_{12} + 2\bar{c}_{1}^{2}\bar{H}_{66}}{\lambda_{2}}\frac{l_{0}h}{b^{2}},} \\ &{d_{16} = \frac{2\bar{c}_{2}\bar{D}_{55} - \bar{A}_{55} - \bar{c}_{2}^{2}\bar{F}_{55}}{\lambda_{2}}l_{0}^{2},} \\ &{d_{17} = \frac{\bar{I}_{1} - \bar{c}_{1}\bar{I}_{3}}{\lambda_{2}}l_{0}^{3} \alpha^{2},} \\ &{d_{18} = \frac{\bar{I}_{2} - 2\bar{c}_{1}\bar{I}_{4} - \bar{c}_{1}^{2}\bar{I}_{6}}{\lambda_{2}}l_{0}^{2} \alpha^{2},} \\ &{d_{19} = \frac{- \bar{c}_{1}\bar{I}_{4} + \bar{c}_{1}^{2}\bar{I}_{6}}{\lambda_{2}}hl_{0} \alpha^{2}.} \end{aligned}$$
(23)

Letting \(\lambda_{3} = \bar{D}_{22} - 2\bar{r}_{1}\bar{F}_{22} + 2\bar{r}_{1}^{2}\bar{H}_{22}\), we have

$$\begin{aligned} &{e_{10} = 1,\quad e_{11} = \frac{\bar{D}_{66} - 2\bar{c}_{1}\bar{F}_{66} + \bar{c}_{1}^{2}\bar{H}_{66}}{\lambda_{3}} \frac{b^{2}}{l_{0}^{2}},} \\ &{e_{12} = \frac{\bar{c}_{1}^{2}\bar{H}_{22} - \bar{c}_{1}\bar{F}_{22}}{\lambda_{3}}\frac{h}{b},} \\ &{e_{13} = \frac{\bar{D}_{21} - 2\bar{c}_{1}\bar{F}_{21} + \bar{D}_{66} - 2\bar{c}_{1}\bar{F}_{66} + \bar{c}_{1}^{2}\bar{H}_{21} + \bar{c}_{1}^{2}\bar{H}_{66}}{\lambda_{3}}\frac{b}{l},} \\ &{e_{14} = \frac{2\bar{c}_{2}\bar{D}_{44} - \bar{A}_{44} - \bar{c}_{2}^{2}\bar{F}_{44}}{\lambda_{3}}bh,} \\ &{e_{15} = \frac{ - \bar{c}_{1}\bar{F}_{21} - 2\bar{c}_{1}\bar{F}_{66} + \bar{c}_{1}^{2}\bar{H}_{21} + 2\bar{c}_{1}^{2}\bar{H}_{66}}{\lambda_{3}}\frac{bh}{l_{0}^{2}},} \\ &{e_{16} = \frac{2\bar{c}_{2}\bar{D}_{44} - \bar{A}_{44} - \bar{c}_{2}^{2}\bar{F}_{44}}{\lambda_{3}}\frac{bh}{l_{0}^{2}},} \\ &{e_{17} = \frac{\bar{I}_{1} - \bar{c}_{1}\bar{I}_{3}}{\lambda_{3}}b^{3} \alpha^{2},\quad e_{18} = \frac{\bar{I}_{2} - 2\bar{c}_{1}\bar{I}_{4} - \bar{c}_{1}^{2}\bar{I}_{6}}{\lambda_{3}}b^{2} \alpha^{2},} \\ &{e_{19} = \frac{ - \bar{c}_{1}\bar{I}_{4} + \bar{c}_{1}^{2}\bar{I}_{6}}{\lambda_{3}}hb\alpha^{2}.} \end{aligned}$$
(24)

Appendix B

Using the Galerkin method, we obtain the coefficients of the first two modes for the displacement variables u 0, v 0, w 0, ϕ x , ϕ y . The coefficients of u 1(t) are obtained as

$$\begin{aligned} &{k_{11} = - 0.0314\frac{\pi^{2}}{4l^{2}}a_{10},\quad k_{12} = - 0.0314\frac{\pi^{2}}{b^{2}}a_{11},} \\ &{k_{13} = 0.1390\frac{\pi^{2}}{2lb}a_{12},\quad k_{14} = 0.0872\frac{3\pi^{2}}{lb}a_{12},} \\ &{k_{15} = 0.6180\frac{k_{1}k_{2}^{2}}{lb^{2}}a_{13},} \\ &{ k_{16} = 0.2403\frac{k_{2}k_{4}( k_{1} + k_{3} )}{lb^{2}}a_{13},} \\ &{k_{17} = - 0.0029\frac{k_{2}k_{3}k_{4}}{lb^{2}}a_{13},} \\ &{k_{18} = 0.6180\frac{k_{1}^{3}}{l^{3}}a_{14},} \\ &{k_{19} = - 0.0953\frac{k_{1}k_{3}( k_{1} + k_{3} )}{l^{3}}a_{14},} \\ &{k_{20} = 0.0426\frac{k_{3}^{3}}{l^{3}}a_{14},\quad k_{21} = - 0.4319\frac{k_{1}k_{2}^{2}}{lb^{2}}a_{15},} \\ &{k_{22} = - 0.2047\frac{( k_{1}k_{4}^{2} + k_{3}k_{2}^{2} )}{lb^{2}}a_{15},} \\ &{k_{23} = 0.0548\frac{k_{3}k_{4}^{2}}{lb^{2}}a_{15},\quad k_{24} = 0.1534a_{16}.} \end{aligned}$$
(25)

The coefficients of u 2(t) are obtained as

$$\begin{aligned} &{l_{11} = - 0.1599\frac{9\pi^{2}}{4l^{2}}a_{10},\quad l_{12} = - 0.1599\frac{4\pi^{2}}{b^{2}}a_{11},} \\ &{l_{13} = 0.3094\frac{\pi^{2}}{2lb}a_{12},\quad l_{14} = 0.2073\frac{3\pi^{2}}{lb}a_{12},} \\ &{l_{15} = 0.8094\frac{k_{1}k_{2}^{2}}{lb^{2}}a_{13},} \\ &{l_{16} = 0.7573\frac{k_{2}k_{4}( k_{1} + k_{3} )}{lb^{2}}a_{13},} \\ &{l_{17} = - 0.0194\frac{k_{2}k_{3}k_{4}}{lb^{2}}a_{13},} \\ &{l_{18} = 0.8094\frac{k_{1}^{3}}{l^{3}}a_{14},} \\ &{l_{19} = - 0.2368\frac{k_{1}k_{3}( k_{1} + k_{3} )}{l^{3}}a_{14},} \\ &{l_{20} = 0.0927\frac{k_{3}^{3}}{l^{3}}a_{14},\quad l_{21} = - 0.1343\frac{k_{1}k_{2}^{2}}{lb^{2}}a_{15},} \\ &{l_{22} = - 0.1248\frac{( k_{1}k_{4}^{2} + k_{3}k_{2}^{2} )}{lb^{2}}a_{15},} \\ &{l_{23} = 0.1051\frac{k_{3}k_{4}^{2}}{lb^{2}}a_{15},\quad l_{24} = 0.3354a_{16}.} \end{aligned}$$
(26)

The coefficients of v 1(t) are obtained as

$$\begin{aligned} &{m_{11} = - 0.0049\frac{\pi^{2}}{b^{2}}b_{10},\quad m_{12} = - 0.0049\frac{\pi^{2}}{4l^{2}}b_{11},} \\ &{m_{13} = 0.0219\frac{\pi^{2}}{2lb}b_{12},\quad m_{14} = 0.0300\frac{\pi^{2}}{lb}b_{12},} \\ &{m_{15} = - 0.0176\frac{k_{1}^{2}k_{2}}{bl^{2}}b_{13},} \\ &{m_{16} = 0.00008\frac{k_{1}k_{3}( k_{4} + k_{2} )}{bl^{2}}b_{13},} \\ &{m_{17} = 0.2206\frac{k_{3}^{2}k_{4}}{bl^{2}}b_{13},} \\ &{m_{18} = - 0.0176\frac{k_{2}^{3}}{b^{3}}b_{14},} \\ &{m_{19} = - 0.0522\frac{k_{2}k_{4}( k_{4} + k_{2} )}{b^{3}}b_{14},} \\ &{m_{20} = 0.0822\frac{k_{4}^{3}}{b^{3}}b_{14},} \\ &{m_{21} = - 0.0010\frac{k_{1}^{2}k_{2}}{l^{2}b}b_{15},} \\ &{m_{22} = 0.5992\frac{( k_{4}k_{1}^{2} + k_{2}k_{3}^{2} )}{l^{2}b}b_{15},} \\ &{m_{23} = - 0.0012\frac{k_{3}^{2}k_{4}}{l^{2}b}b_{15}.} \end{aligned}$$
(27)

The coefficients of v 2(t) are obtained as

$$\begin{aligned} &{n_{11} = - 0.1135\frac{4\pi^{2}}{b^{2}}b_{10},\quad n_{12} = - 0.1135\frac{9\pi^{2}}{4l^{2}}b_{11},} \\ &{n_{13} = 0.1062\frac{\pi^{2}}{2lb}b_{12},\quad n_{14} = 0.1472\frac{3\pi^{2}}{lb}b_{12},} \\ &{n_{15} = - 0.1214\frac{k_{1}^{2}k_{2}}{bl^{2}}b_{13},} \\ &{n_{16} = - 0.0048\frac{k_{1}k_{3}( k_{4} + k_{2} )}{bl^{2}}b_{13},} \\ &{n_{17} = 1.1086\frac{k_{3}^{2}k_{4}}{bl^{2}}b_{13},} \\ &{n_{18} = - 0.1218\frac{k_{2}^{3}}{b^{3}}b_{14},} \\ &{n_{19} = - 0.1878\frac{k_{2}k_{4}( k_{4} + k_{2} )}{b^{3}}b_{14},} \\ &{n_{20} = 0.3605\frac{k_{4}^{3}}{b^{3}}b_{14},} \\ &{n_{21} = - 0.0074\frac{k_{1}^{2}k_{2}}{l^{2}b}b_{15},} \\ &{n_{22} = 3.0182\frac{( k_{4}k_{1}^{2} + k_{2}k_{3}^{2} )}{l^{2}b}b_{15},} \\ &{n_{23} = - 0.0060\frac{k_{3}^{2}k_{4}}{l^{2}b}b_{15}.} \end{aligned}$$
(28)

The coefficients of ϕ x1(t) are obtained as

$$\begin{aligned} &{k_{31} = - 0.0314\frac{\pi^{2}}{4l^{2}}d_{10},\quad k_{32} = - 0.0314\frac{\pi^{2}}{b^{2}}d_{11},} \\ &{k_{33} = - 0.2696\frac{k_{1}^{3}}{l^{3}}d_{12},\quad k_{34} = - 0.0126\frac{k_{3}^{3}}{l^{3}}d_{12},} \\ &{k_{35} = 0.0104\frac{\pi^{2}}{2lb}d_{13},\quad k_{36} = 0.0362\frac{2\pi^{2}}{lb}d_{13},} \\ &{k_{37} = 0.1291\frac{k_{1}}{l}d_{14},\quad k_{38} = 0.0025\frac{k_{3}}{l}d_{14},} \\ &{k_{39} = - 0.3729\frac{k_{1}k_{2}^{2}}{lb^{2}}d_{15},\quad k_{40} = 0.0077\frac{k_{3}k_{4}^{2}}{lb^{2}}d_{15},} \\ &{ k_{41} = d_{16}.} \end{aligned}$$
(29)

The coefficients of ϕ x2(t) are obtained as

$$\begin{aligned} &{l_{31} = - 0.0485\frac{\pi^{2}}{l^{2}}d_{10},\quad l_{32} = - 0.0485\frac{4\pi^{2}}{b^{2}}d_{11},} \\ &{ l_{33} = - 0.5242\frac{k_{1}^{3}}{l^{3}}d_{12},\quad l_{34} = - 0.0453\frac{k_{3}^{3}}{l^{3}}d_{12},} \\ &{l_{35} = 0.0136\frac{\pi^{2}}{2lb}d_{13},\quad l_{36} = 0.0482\frac{2\pi^{2}}{lb}d_{13},} \\ &{ l_{37} = 0.2500\frac{k_{1}}{l}d_{14},\quad l_{38} = 0.0010\frac{k_{3}}{l}d_{14},} \\ &{k_{39} = - 0.7307\frac{k_{1}k_{2}^{2}}{lb^{2}}d_{15},} \\ &{l_{40} = - 0.0025\frac{k_{3}k_{4}^{2}}{lb^{2}}d_{15},\quad l_{41} = d_{16}.} \end{aligned}$$
(30)

The coefficients of ϕ y1(t) are obtained as

$$\begin{aligned} &{m_{31} = 0.0005\frac{\pi^{2}}{b^{2}}e_{10},\quad m_{32} = 0.0154\frac{\pi^{2}}{4l^{2}}e_{11},} \\ &{ m_{33} = - 0.0365\frac{k_{2}^{3}}{b^{3}}e_{12},\quad m_{34} = 0.0110\frac{k_{4}^{3}}{b^{3}}e_{12},} \\ &{m_{35} = 0.0051\frac{\pi^{2}}{2lb}e_{13},\quad m_{36} = 0.0083\frac{2\pi^{2}}{lb}e_{13},} \\ &{m_{37} = - 0.0257\frac{k_{2}}{b}e_{14},\quad m_{38} = - 0.0176\frac{k_{4}}{b}e_{14},} \\ &{m_{39} = - 0.0067\frac{k_{1}^{2}k_{2}}{l^{2}b}e_{15},\quad m_{40} = 0.0140\frac{k_{3}^{2}k_{4}}{l^{2}b}e_{15},} \\ &{ m_{41} = e_{16}.} \end{aligned}$$
(31)

The coefficients of ϕ y2(t) are obtained as

$$\begin{aligned} &{n_{31} = 0.0017\frac{4\pi^{2}}{b^{2}}e_{10},\quad n_{32} = 0.0485\frac{\pi^{2}}{l^{2}}e_{11},} \\ &{ n_{33} = - 0.0095\frac{k_{2}^{3}}{b^{3}}e_{12},\quad n_{34} = 0.0525\frac{k_{4}^{3}}{b^{3}}e_{12},} \\ &{n_{35} = 0.0136\frac{\pi^{2}}{2lb}e_{13},\quad n_{36} = 0.0224\frac{2\pi^{2}}{lb}e_{13},} \\ &{ n_{37} = - 0.0698\frac{k_{2}}{b}e_{14},\quad n_{38} = - 0.0724\frac{k_{4}}{b}e_{14},} \\ &{n_{39} = - 0.0186\frac{k_{1}^{2}k_{2}}{l^{2}b}e_{15},\quad n_{40} = 0.0576\frac{k_{3}^{2}k_{4}}{l^{2}b}e_{15},} \\ &{ n_{41} = e_{16}.} \end{aligned}$$
(32)

The coefficients of w 1(t) are obtained as

$$\begin{aligned} &{r_{11} = 0.1386\frac{k_{1}^{2}}{l^{2}}\biggl( c_{10} + c_{45}\biggl( \frac{\mathrm{d}l}{\mathrm{d}t} \biggr)^{2} \biggr),} \\ &{ r_{12} = - 0.4359\frac{k_{3}^{2}}{l^{2}}\biggl( c_{10} + c_{45}\biggl( \frac{\mathrm{d}l}{\mathrm{d}t} \biggr)^{2} \biggr),} \\ &{r_{13} = - 0.1813\frac{k_{2}^{2}}{b^{2}}c_{11},\quad r_{14} = - 0.2417\frac{k_{4}^{2}}{b^{2}}c_{11},} \\ &{ r_{15} = 0.0673\frac{\pi k_{1}^{2}}{2l^{3}}c_{12},\quad r_{16} = - 0.2065\frac{\pi k_{3}^{2}}{2l^{3}}c_{12},} \\ &{ r_{17} = 0.1229\frac{3\pi k_{1}^{2}}{2l^{3}}c_{12},\quad r_{18} = - 0.2843\frac{3\pi k_{3}^{2}}{2l^{3}}c_{12},} \\ &{ r_{19} = - 0.0835\frac{\pi k_{2}^{2}}{2lb^{2}}c_{13},\quad r_{20} = - 0.1127\frac{\pi k_{4}}{2lb^{2}}c_{13},} \\ &{ r_{21} = - 0.1035\frac{3\pi k_{2}^{2}}{2lb^{2}}c_{13},\quad r_{22} = - 0.1517\frac{3\pi k_{4}^{2}}{2lb^{2}}c_{13},} \\ &{ r_{23} = 0.0043\frac{\pi k_{1}k_{2}}{lb^{2}}c_{14},\quad r_{24} = - 0.0064\frac{\pi k_{3}k_{4}}{lb^{2}}c_{14},} \\ &{r_{25} = 0.0289\frac{2\pi k_{1}k_{2}}{lb^{2}}c_{14},} \\ &{r_{26} = - 0.0289\frac{2\pi k_{31}k_{4}}{lb^{2}}c_{14},} \\ &{ r_{27} = 0.1456\frac{\pi^{2}k_{1}}{4l^{3}}c_{15},\quad r_{28} = - 0.0243\frac{\pi^{2}k_{3}}{4l^{3}}c_{15},} \\ &{ r_{29} = 0.3616\frac{9\pi^{2}k_{1}}{4l^{3}}c_{15},\quad r_{30} = - 0.0109\frac{9\pi^{2}k_{3}}{4l^{3}}c_{15},} \\ &{ r_{31} = - 0.0029\frac{\pi^{2}k_{2}}{4l^{2}b}c_{16},\quad r_{32} = - 0.0353\frac{\pi^{2}k_{4}}{4l^{2}b}c_{16},} \\ &{r_{33} = - 0.0195\frac{9\pi^{2}k_{2}}{4l^{2}b}c_{16},} \\ &{r_{34} = - 0.1750\frac{9\pi^{2}k_{4}}{4l^{2}b}c_{16},} \end{aligned}$$
(33)
$$\begin{aligned} &{ r_{35} = - 0.0105\frac{\pi^{2}k_{2}}{2lb^{2}}c_{17},\quad r_{36} = - 0.1384\frac{\pi^{2}k_{4}}{2lb^{2}}c_{17},} \\ &{ r_{37} = - 0.0186\frac{3\pi^{2}k_{2}}{lb^{2}}c_{17},} \\ &{r_{38} = - 0.0186\frac{3\pi^{2}k_{4}}{lb^{2}}c_{17},} \\ &{ r_{39} = 0.5712\frac{\pi^{2}k_{1}}{2l^{2}b}c_{18},\quad r_{40} = - 0.0246\frac{\pi^{2}k_{3}}{2l^{2}b}c_{18},} \\ &{r_{41} = 0.3884\frac{3\pi^{2}k_{1}}{l^{2}b}c_{18},\quad r_{42} = 0.0109\frac{3\pi^{2}k_{3}}{l^{2}b}c_{18},} \\ &{r_{43} = 0.0029\frac{\pi^{2}k_{2}}{b^{3}}c_{19},\quad r_{44} = 0.0353\frac{\pi^{2}k_{4}}{b^{3}}c_{19},} \\ &{ r_{45} = 0.0195\frac{4\pi^{2}k_{2}}{b^{3}}c_{19},\quad r_{46} = 0.1750\frac{4\pi^{2}k_{4}}{b^{3}}c_{19},} \\ &{r_{47} = 0.0125\frac{\pi k_{1}}{l^{2}b}c_{20},\quad r_{48} = - 0.1116\frac{\pi k_{3}}{l^{2}b}c_{20},} \\ &{r_{49} = 0.0366\frac{2\pi k_{1}}{l^{2}b}c_{20},\quad r_{50} = - 0.2873\frac{2\pi k_{3}}{l^{2}b}c_{20},} \\ &{r_{51} = - 0.0461\frac{\pi k_{2}}{b^{3}}c_{21},\quad r_{52} = - 0.0572\frac{\pi k_{4}}{b^{3}}c_{21},} \\ &{ r_{53} = - 0.1084\frac{2\pi k_{2}}{b^{3}}c_{21},\quad r_{54} = - 0.1450\frac{2\pi k_{4}}{b^{3}}c_{21},} \\ &{ r_{55} = - 0.0167\frac{\pi k_{1}k_{2}}{2l^{2}b}c_{22},\quad r_{56} = 0.0065\frac{\pi k_{3}k_{4}}{2l^{2}b}c_{22},} \\ &{ r_{57} = - 0.0311\frac{3\pi k_{1}k_{2}}{2l^{2}b}c_{22},} \\ &{r_{58} = - 0.0055\frac{3\pi k_{3}k_{4}}{2l^{2}b}c_{22},} \end{aligned}$$
$$\begin{aligned} &{ r_{59} = 0.1456\frac{\pi^{2}k_{1}^{2}}{lb^{2}}c_{23},\quad r_{60} = - 0.0243\frac{\pi^{2}k_{3}^{2}}{lb^{2}}c_{23},} \\ &{ r_{61} = 0.3616\frac{4\pi^{2}k_{1}^{2}}{lb^{2}}c_{23},\quad r_{62} = - 0.0571\frac{4\pi^{2}k_{3}^{2}}{lb^{2}}c_{23},} \\ &{ r_{63} = 0.2217\frac{k_{1}^{4}}{l^{4}}c_{24},} \\ &{r_{64} = - 1.3458\frac{( k_{1}^{2}k_{3}^{2} + 2k_{1}^{3}k_{3} )}{l^{4}}c_{24},} \\ &{ r_{65} = 0.3432\frac{( k_{1}^{2}k_{3}^{2} + 2k_{1}k_{3}^{3} )}{l^{4}}c_{24},} \\ &{r_{66} = - 0.4387\frac{k_{3}^{4}}{l^{4}}c_{24},\quad r_{67} = - 0.4455\frac{k_{1}^{2}k_{2}^{2}}{l^{2}b^{2}}c_{25},} \\ &{ r_{68} = - 0.7402\frac{( k_{1}^{2}k_{4}^{2} + 2k_{2}^{2}k_{1}k_{3} )}{l^{2}b^{2}}c_{25},} \\ &{r_{69} = - 0.7008\frac{( k_{1}^{2}k_{3}^{2} + 2k_{4}^{2}k_{1}k_{3} )}{l^{2}b^{2}}c_{25},} \\ &{r_{70} = - 0.2480\frac{k_{3}^{2}k_{4}^{2}}{l^{2}b^{2}}c_{25},\quad r_{71} = - 0.0099\frac{k_{1}^{2}k_{2}^{2}}{l^{2}b^{2}}c_{26},} \\ &{ r_{72} = - 0.8399\frac{( k_{2}^{2}k_{3}^{2} + 2k_{1}^{2}k_{2}k_{4} )}{l^{2}b^{2}}c_{26},} \\ &{r_{73} = 0.1511\frac{( k_{1}^{2}k_{4}^{2} + 2k_{3}^{2}k_{2}k_{4} )}{l^{2}b^{2}}c_{26},} \end{aligned}$$
$$\begin{aligned} &{r_{74} = 3.8143\frac{k_{3}^{2}k_{4}^{2}}{l^{2}b^{2}}c_{26},\quad r_{75} = - 0.0693\frac{k_{2}^{4}}{b^{4}}c_{27},} \\ &{r_{76} = - 0.0084\frac{( k_{2}^{2}k_{4}^{2} + 2k_{2}^{3}k_{4} )}{b^{4}}c_{27},} \\ &{r_{77} = - 0.3677\frac{( k_{2}^{2}k_{4}^{2} + 2k_{2}k_{4}^{3} )}{b^{4}}c_{27},} \\ &{r_{78} = - 0.2997\frac{k_{4}^{4}}{b^{4}}c_{27},\quad r_{79} = 0.1909\frac{k_{1}^{2}k_{2}^{2}}{l^{2}b^{2}}c_{28},} \\ &{r_{80} = - 0.0051\frac{( k_{1}^{2}k_{2}k_{4} + k_{1}k_{2}^{2}k_{3} + k_{1}k_{2}k_{3}k_{4} )}{l^{2}b^{2}}c_{28},} \\ &{r_{81} = - 0.2473\frac{( k_{4}^{2}k_{1}k_{3} + k_{2}k_{3}^{2}k_{4} + k_{1}k_{2}k_{3}k_{4} )}{l^{2}b^{2}}c_{28},} \\ &{ r_{82} = 0.1107\frac{k_{3}^{2}k_{4}^{2}}{l^{2}b^{2}}c_{28},\quad r_{83} = 0.3059\frac{\pi}{2l}c_{29},} \\ &{r_{84} = 0.2763\frac{\pi}{l}c_{29},\quad r_{85} = - 0.0012\frac{\pi}{ b}c_{30},} \\ &{r_{86} = - 0.0100\frac{2\pi}{b}c_{30},\quad r_{87} = 0.3059\frac{\pi^{3}}{8l^{3}}c_{31},} \\ &{ r_{88} = 0.2763\frac{\pi^{3}}{l^{3}}c_{31},\quad r_{89} = 0.0012\frac{\pi^{3}}{b^{3}}c_{32},} \\ &{r_{90} = 0.0100\frac{8\pi^{3}}{b^{3}}c_{32},\quad r_{91} = 0.3836\frac{k_{1}^{4}}{l^{4}}c_{33},} \\ &{r_{92} = 0.5509\frac{k_{3}^{4}}{l^{4}}c_{33},\quad r_{93} = 0.3836\frac{k_{2}^{4}}{b^{4}}c_{34},} \\ &{ r_{94} = 0.5509\frac{k_{4}^{4}}{b^{4}}c_{34},\quad r_{95} = 0.0364\frac{\pi^{3}}{4l^{2}b}c_{35},} \\ &{r_{96} = 0.0710\frac{2\pi^{3}}{l^{2}b}c_{35},\quad r_{97} = 0.3059\frac{\pi^{3}}{2lb^{2}}c_{36},} \\ &{r_{98} = 0.2763\frac{4\pi^{3}}{lb^{2}}c_{36},\quad r_{99} = - 0.0655\frac{k_{1}^{2}k_{2}^{2}}{l^{2}b^{2}}c_{37},} \end{aligned}$$
$$\begin{aligned} &{r_{100} = 0.1913\frac{k_{3}^{2}k_{4}^{2}}{l^{2}b^{2}}c_{37},} \\ &{r_{101} = 0.6087\frac{k_{1}}{l}\biggl( c_{38} + c_{40}\frac{\mathrm{d}l}{\mathrm{d}t} + c_{45}\frac{\mathrm{d}^{2}l}{\mathrm{d}t^{2}} \biggr),} \\ &{r_{102} = - 0.0301\frac{k_{3}}{l}\biggl( c_{38} + c_{40}\frac{\mathrm{d}l}{\mathrm{d}t} + c_{45}\frac{\mathrm{d}^{2}l}{\mathrm{d}t^{2}} \biggr),} \\ &{r_{103} = - 0.0862\frac{k_{2}}{b}c_{39},} \\ &{r_{104} = - 0.4821\frac{k_{4}}{b}c_{39},\quad r_{105} = 0.5912c_{40},} \end{aligned}$$
$$\begin{aligned} &{r_{106} = c_{41}\biggl( 1.663\frac{k_{1}^{3}}{l^{3}}c_{42}^{3} - 0.216\frac{3k_{1}^{2}k_{2}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{r_{106} =} {}+ 0.135\frac{3k_{1}k_{2}^{2}}{lb^{2}}c_{42}c_{43}^{2} - 0.0302\frac{k_{2}^{3}}{b^{3}}c_{43}^{3} \biggr),} \\ &{r_{107} = c_{41}\biggl( - 0.226 \frac{k_{1}^{2}k_{3}}{l^{3}}c_{42}^{3} + 0.025\frac{2k_{1}k_{2}k_{3}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{r_{107} =} {}- 0.012\frac{k_{2}^{2}k_{3}}{lb^{2}}c_{42}^{2}c_{43} - 0.966\frac{k_{1}^{2}k_{4}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{r_{107} =} {} + 0.215\frac{2k_{1}k_{2}k_{4}}{lb^{2}}c_{42}^{2}c_{43} - 0.026\frac{k_{2}^{2}k_{4}}{b^{3}}c_{43}^{3} \biggr),} \\ &{r_{108} = c_{41}\biggl( 0.542\frac{k_{1}k_{3}^{2}}{l^{3}}c_{42}^{3} + 0.078\frac{2k_{1}k_{3}k_{4}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{r_{108} =} {} + 1.01\frac{k_{1}k_{4}^{2}}{lb^{2}}c_{42}c_{43}^{2} - 0.039\frac{k_{2}k_{3}^{2}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{r_{108} =} {}+ 0.0003\frac{2k_{2}k_{3}k_{4}}{lb^{2}}c_{42}c_{43}^{2} - 0.25\frac{k_{2}k_{4}^{2}}{b^{3}}c_{43}^{3} \biggr),} \\ &{r_{109} = c_{41}c_{44}\biggl( 1.09 \frac{k_{1}^{2}}{l^{2}}c_{42}^{2} - 0.15\frac{2k_{1}k_{2}}{lb}c_{42}c_{43}} \\ &{\phantom{r_{109} =} {} + 0.10\frac{k_{2}^{2}}{b^{2}}c_{43}^{2} \biggr),} \\ &{r_{110} = c_{41}\biggl( 0.77\frac{k_{1}}{l}c_{42} - 0.114\frac{k_{2}}{b}c_{43} \biggr)c_{44}^{2},} \end{aligned}$$
$$\begin{aligned} &{r_{111} = c_{41}c_{44}\biggl( 0.35 \frac{k_{3}^{2}}{l^{2}}c_{42}^{2} + 0.11\frac{2k_{3}k_{4}}{lb}c_{42}c_{43}} \\ &{\phantom{r_{111} =} {} + 0.65\frac{k_{4}^{2}}{b^{2}}c_{43}^{2} \biggr),} \\ &{r_{112} = c_{41}\biggl( - 0.29\frac{k_{3}}{l}c_{42} - 0.43\frac{k_{4}}{b}c_{43} \biggr)c_{44}^{2},} \\ &{r_{113} = c_{41}c_{44}\biggl( - 0.30 \frac{k_{1}k_{3}}{l^{2}}c_{42}^{2} - 0.62\frac{k_{1}k_{4}}{lb}c_{42}c_{43}} \\ &{\phantom{r_{113} =} {}+ 0.02\frac{k_{2}k_{3}}{lb}c_{42}c_{43} + 0.15\frac{k_{2}k_{4}}{b^{2}}c_{43}^{2} \biggr),} \\ &{r_{114} = c_{41}\biggl( - 0.04\frac{k_{3}^{3}}{l^{3}}c_{42}^{3} - 0.20\frac{3k_{3}^{2}k_{4}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{r_{114} =} {}- 0.05\frac{3k_{3}k_{4}^{2}}{lb^{2}}c_{42}c_{43}^{2} - 1.32\frac{k_{4}^{3}}{b^{3}}c_{43}^{3} \biggr),} \\ &{r_{115} = 0.298c_{41}c_{44}^{3}, \quad r_{116} = 0.3836c_{45},} \\ &{r_{117} = 0.6087c_{45}\frac{2k_{1}}{l} \frac{\mathrm{d}l}{\mathrm{d}t},} \\ &{r_{118} = - 0.03c_{45}\frac{2k_{3}}{l} \frac{\mathrm{d}l}{\mathrm{d}t}.} \end{aligned}$$

The coefficients of w 2(t) are obtained as

$$\begin{aligned} &{s_{11} = 0.4601\frac{k_{1}^{2}}{l^{2}}\biggl( c_{10} + c_{45}\biggl( \frac{\mathrm{d}l}{\mathrm{d}t} \biggr)^{2} \biggr),} \\ &{ s_{12} = 0.00001\frac{k_{3}^{2}}{l^{2}}\biggl( c_{10} + c_{45}\biggl( \frac{\mathrm{d}l}{\mathrm{d}t} \biggr)^{2} \biggr),} \\ &{s_{13} = - 0.2014\frac{k_{2}^{2}}{b^{2}}c_{11},\quad s_{14} = - 1.2199\frac{k_{4}^{2}}{b^{2}}c_{11},} \\ &{s_{15} = 0.2242\frac{\pi k_{1}^{2}}{2l^{3}}c_{12},\quad s_{16} = - 0.6139\frac{\pi k_{3}^{2}}{2l^{3}}c_{12},} \\ &{s_{17} = 0.4000\frac{3\pi k_{1}^{2}}{2l^{3}}c_{12},\quad s_{18} = - 0.7953\frac{3\pi k_{3}^{2}}{2l^{3}}c_{12},} \\ &{s_{19} = - 0.0944\frac{\pi k_{2}^{2}}{2lb^{2}}c_{13},\quad s_{20} = - 0.5487\frac{\pi k_{4}}{2lb^{2}}c_{13},} \\ &{s_{21} = - 0.1286\frac{3\pi k_{2}^{2}}{2lb^{2}}c_{13},\quad s_{22} = - 0.6692\frac{3\pi k_{4}^{2}}{2lb^{2}}c_{13},} \\ &{s_{23} = 0.0609\frac{\pi k_{1}k_{2}}{lb^{2}}c_{14},\quad s_{24} = - 0.0001\frac{\pi k_{3}k_{4}}{lb^{2}}c_{14},} \\ &{ s_{25} = - 0.2882\frac{2\pi k_{1}k_{2}}{lb^{2}}c_{14},} \\ &{s_{26} = 0.0016\frac{2\pi k_{31}k_{4}}{lb^{2}}c_{14},} \\ &{ s_{27} = 0.2192\frac{\pi^{2}k_{1}}{4l^{3}}c_{15},\quad s_{28} = - 0.0018\frac{\pi^{2}k_{3}}{4l^{3}}c_{15},} \\ &{ s_{29} = 0.5740\frac{9\pi^{2}k_{1}}{4l^{3}}c_{15},\quad s_{30} = - 0.2790\frac{9\pi^{2}k_{3}}{4l^{3}}c_{15},} \\ &{ s_{31} = 0.0371\frac{\pi^{2}k_{2}}{4l^{2}b}c_{16},\quad s_{32} = - 0.0244\frac{\pi^{2}k_{4}}{4l^{2}b}c_{16},} \\ &{ s_{33} = 0.1733\frac{9\pi^{2}k_{2}}{4l^{2}b}c_{16},\quad s_{34} = - 0.1166\frac{9\pi^{2}k_{4}}{4l^{2}b}c_{16},} \end{aligned}$$
(34)
$$\begin{aligned} &{ s_{35} = 0.1455\frac{\pi^{2}k_{2}}{2lb^{2}}c_{17},\quad s_{36} = - 0.1050\frac{\pi^{2}k_{4}}{2lb^{2}}c_{17},} \\ &{s_{37} = 0.1864\frac{3\pi^{2}k_{2}}{lb^{2}}c_{17},\quad s_{38} = - 0.1492\frac{3\pi^{2}k_{4}}{lb^{2}}c_{17},} \\ &{s_{39} = 0.9565\frac{\pi^{2}k_{1}}{2l^{2}b}c_{18},\quad s_{40} = 0.2794\frac{\pi^{2}k_{3}}{2l^{2}b}c_{18},} \\ &{s_{41} = 0.7154\frac{3\pi^{2}k_{1}}{l^{2}b}c_{18},\quad s_{42} = 0.2790\frac{3\pi^{2}k_{3}}{l^{2}b}c_{18},} \\ &{s_{43} = - 0.0371\frac{\pi^{2}k_{2}}{b^{3}}c_{19},\quad s_{44} = 0.0244\frac{\pi^{2}k_{4}}{b^{3}}c_{19},} \\ &{s_{45} = - 0.1733\frac{4\pi^{2}k_{2}}{b^{3}}c_{19},\quad s_{46} = 0.1166\frac{4\pi^{2}k_{4}}{b^{3}}c_{19},} \\ &{ s_{47} = 0.0565\frac{\pi k_{1}}{l^{2}b}c_{20},\quad s_{48} = - 0.3162\frac{\pi k_{3}}{l^{2}b}c_{20},} \\ &{s_{49} = 0.1589\frac{2\pi k_{1}}{l^{2}b}c_{20},\quad s_{50} = - 0.7486\frac{2\pi k_{3}}{l^{2}b}c_{20},} \\ &{s_{51} = - 0.0481\frac{\pi k_{2}}{b^{3}}c_{21},\quad s_{52} = - 0.2547\frac{\pi k_{4}}{b^{3}}c_{21},} \\ &{s_{53} = - 0.1195\frac{2\pi k_{2}}{b^{3}}c_{21},\quad s_{54} = - 0.5461\frac{2\pi k_{4}}{b^{3}}c_{21},} \\ &{ s_{55} = 0.2659\frac{\pi k_{1}k_{2}}{2l^{2}b}c_{22},\quad s_{56} = - 0.0171\frac{\pi k_{3}k_{4}}{2l^{2}b}c_{22},} \end{aligned}$$
$$\begin{aligned} &{s_{57} = 0.3592\frac{3\pi k_{1}k_{2}}{2l^{2}b}c_{22},} \\ &{s_{58} = - 0.0343\frac{3\pi k_{3}k_{4}}{2l^{2}b}c_{22},} \\ &{s_{59} = 0.2192\frac{\pi^{2}k_{1}^{2}}{lb^{2}}c_{23},\quad s_{60} = - 0.0018\frac{\pi^{2}k_{3}^{2}}{lb^{2}}c_{23},} \\ &{ s_{61} = 0.5740\frac{4\pi^{2}k_{1}^{2}}{lb^{2}}c_{23},\quad s_{62} = 0.0133\frac{4\pi^{2}k_{3}^{2}}{lb^{2}}c_{23},} \\ &{ s_{63} = 0.9333\frac{k_{1}^{4}}{l^{4}}c_{24},} \\ &{s_{64} = - 2.7017\frac{( k_{1}^{2}k_{3}^{2} + 2k_{1}^{3}k_{3} )}{l^{4}}c_{24},} \\ &{ s_{65} = 1.0896\frac{( k_{1}^{2}k_{3}^{2} + 2k_{1}k_{3}^{3} )}{l^{4}}c_{24},} \\ &{s_{66} = - 1.0052\frac{k_{3}^{4}}{l^{4}}c_{24},\quad s_{67} = - 0.6388\frac{k_{1}^{2}k_{2}^{2}}{l^{2}b^{2}}c_{25},} \\ &{s_{68} = - 1.7862\frac{( k_{1}^{2}k_{4}^{2} + 2k_{2}^{2}k_{1}k_{3} )}{l^{2}b^{2}}c_{25},} \\ &{s_{69} = - 1.2414\frac{( k_{1}^{2}k_{3}^{2} + 2k_{4}^{2}k_{1}k_{3} )}{l^{2}b^{2}}c_{25},} \\ &{s_{70} = - 0.9225\frac{k_{3}^{2}k_{4}^{2}}{l^{2}b^{2}}c_{25},} \\ &{s_{71} = 0.0013\frac{k_{1}^{2}k_{2}^{2}}{l^{2}b^{2}}c_{26},} \end{aligned}$$
$$\begin{aligned} &{s_{72} = - 0.4524\frac{( k_{2}^{2}k_{3}^{2} + 2k_{1}^{2}k_{2}k_{4} )}{l^{2}b^{2}}c_{26},} \\ &{s_{73} = 0.1850\frac{( k_{1}^{2}k_{4}^{2} + 2k_{3}^{2}k_{2}k_{4} )}{l^{2}b^{2}}c_{26},} \\ &{s_{74} = 9.8455\frac{k_{3}^{2}k_{4}^{2}}{l^{2}b^{2}}c_{26},\quad s_{75} = - 0.0189\frac{k_{2}^{4}}{b^{4}}c_{27},} \\ &{s_{76} = - 0.5655\frac{( k_{2}^{2}k_{4}^{2} + 2k_{2}^{3}k_{4} )}{b^{4}}c_{27},} \\ &{s_{77} = - 0.3610\frac{( k_{2}^{2}k_{4}^{2} + 2k_{2}k_{4}^{3} )}{b^{4}}c_{27},} \\ &{s_{78} = - 1.2131\frac{k_{4}^{4}}{b^{4}}c_{27},\quad s_{79} = 0.0729\frac{k_{1}^{2}k_{2}^{2}}{l^{2}b^{2}}c_{28},} \\ &{s_{80} = - 0.0911\frac{( k_{1}^{2}k_{2}k_{4} + k_{1}k_{2}^{2}k_{3} + k_{1}k_{2}k_{3}k_{4} )}{l^{2}b^{2}}c_{28},} \\ &{s_{81} = 1.2927\frac{( k_{4}^{2}k_{1}k_{3} + k_{2}k_{3}^{2}k_{4} + k_{1}k_{2}k_{3}k_{4} )}{l^{2}b^{2}}c_{28},} \end{aligned}$$
$$\begin{aligned} &{s_{82} = 0.3068\frac{k_{3}^{2}k_{4}^{2}}{l^{2}b^{2}}c_{28},\quad s_{83} = 0.1761\frac{\pi}{2l}c_{29},} \\ &{s_{84} = 0.2909\frac{\pi}{l}c_{29},\quad s_{85} = 0.0039\frac{\pi}{ b}c_{30},} \\ &{s_{86} = 0.0253\frac{2\pi}{b}c_{30},\quad s_{87} = 0.1761\frac{\pi^{3}}{8l^{3}}c_{31},} \\ &{s_{88} = 0.2909\frac{\pi^{3}}{l^{3}}c_{31}, \quad s_{89} = - 0.0039\frac{\pi^{3}}{b^{3}}c_{32},} \\ &{s_{90} = - 0.0253\frac{8\pi^{3}}{b^{3}}c_{32},\quad s_{91} = 0.5509\frac{k_{1}^{4}}{l^{4}}c_{33},} \\ &{s_{92} = 1.8503\frac{k_{3}^{4}}{l^{4}}c_{33},\quad s_{93} = 0.5509\frac{k_{2}^{4}}{b^{4}}c_{34},} \\ &{ s_{94} = 1.8503\frac{k_{4}^{4}}{b^{4}}c_{34},\quad s_{95} = - 0.1506\frac{\pi^{3}}{4l^{2}b}c_{35},} \\ &{s_{96} = - 0.2276\frac{2\pi^{3}}{l^{2}b}c_{35},\quad s_{97} = 0.1761\frac{\pi^{3}}{2lb^{2}}c_{36},} \\ &{s_{98} = 0.6084\frac{4\pi^{3}}{lb^{2}}c_{36},\quad s_{99} = - 0.1382\frac{k_{1}^{2}k_{2}^{2}}{l^{2}b^{2}}c_{37},} \\ &{s_{100} = 0.8774\frac{k_{3}^{2}k_{4}^{2}}{l^{2}b^{2}}c_{37},} \end{aligned}$$
$$\begin{aligned} &{s_{101} = 1.0012\frac{k_{1}}{l}\biggl( c_{38} + c_{40}\frac{\mathrm{d}l}{\mathrm{d}t} + c_{45}\frac{\mathrm{d}^{2}l}{\mathrm{d}t^{2}} \biggr),} \\ &{s_{102} = 0.2868\frac{k_{3}}{l}\biggl( c_{38} + c_{40}\frac{\mathrm{d}l}{\mathrm{d}t} + c_{45}\frac{\mathrm{d}^{2}l}{\mathrm{d}t^{2}} \biggr),} \\ &{s_{103} = 0.2608\frac{k_{2}}{b}c_{39},\quad s_{104} = - 0.4385\frac{k_{4}}{b}c_{39},} \\ &{s_{105} = 0.3627c_{40},} \\ &{s_{106} = c_{41}\biggl( 3.12\frac{k_{1}^{3}}{l^{3}}c_{42}^{3} - 0.15\frac{3k_{1}^{2}k_{2}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{s_{106} =} {}+ 0.05\frac{3k_{1}k_{2}^{2}}{lb^{2}}c_{42}c_{43}^{2} + 0.32\frac{k_{2}^{3}}{b^{3}}c_{43}^{3} \biggr),} \\ &{s_{107} = c_{41}\biggl( 0.19\frac{k_{1}^{2}k_{3}}{l^{3}}c_{42}^{3} + 0.03\frac{2k_{1}k_{2}k_{3}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{s_{107} =} {} - 0.12\frac{k_{2}^{2}k_{3}}{lb^{2}}c_{42}^{2}c_{43} - 1.26\frac{k_{1}^{2}k_{4}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{s_{107} =} {} - 0.002\frac{2k_{1}k_{2}k_{4}}{lb^{2}}c_{42}^{2}c_{43} - 0.05\frac{k_{2}^{2}k_{4}}{b^{3}}c_{43}^{3} \biggr),} \\ &{s_{108} = c_{41}\biggl( 1.22\frac{k_{1}k_{3}^{2}}{l^{3}}c_{42}^{3} - 0.08\frac{2k_{1}k_{3}k_{4}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{s_{108} =} {}+ 0.94\frac{k_{1}k_{4}^{2}}{lb^{2}}c_{42}c_{43}^{2} + 0.11\frac{k_{2}k_{3}^{2}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{s_{108} =} {} - 0.02\frac{2k_{2}k_{3}k_{4}}{lb^{2}}c_{42}c_{43}^{2} + 0.21\frac{k_{2}k_{4}^{2}}{b^{3}}c_{43}^{3} \biggr),} \end{aligned}$$
$$\begin{aligned} &{s_{109} = c_{41}c_{44}\biggl( 1.83 \frac{k_{1}^{2}}{l^{2}}c_{42}^{2} - 0.10\frac{2k_{1}k_{2}}{lb}c_{42}c_{43}} \\ &{\phantom{s_{109} =} {} + 0.03\frac{k_{2}^{2}}{b^{2}}c_{43}^{2} \biggr),} \\ &{s_{110} = c_{41}c_{44}^{2} \biggl( 1.18\frac{k_{1}}{l}c_{42} - 0.07\frac{k_{2}}{b}c_{43} \biggr),} \\ &{s_{111} = c_{41}c_{44}\biggl( 0.61 \frac{k_{3}^{2}}{l^{2}}c_{42}^{2} + 0.09\frac{2k_{3}k_{4}}{lb}c_{42}c_{43}} \\ &{\phantom{s_{111} =} {}+ 0.55\frac{k_{4}^{2}}{b^{2}}c_{43}^{2} \biggr),} \\ &{s_{112} = c_{41}c_{44}^{2} \biggl( - 0.35\frac{k_{3}}{l}c_{42} - 0.47\frac{k_{4}}{b}c_{43} \biggr),} \\ &{s_{113} = c_{41}c_{44}\biggl( - 0.26 \frac{k_{1}k_{3}}{l^{2}}c_{42}^{2} - 0.74\frac{k_{1}k_{4}}{lb}c_{42}c_{43}} \\ &{\phantom{s_{113} =} {}+ 0.04\frac{k_{2}k_{3}}{lb}c_{42}c_{43} - 0.001\frac{k_{2}k_{4}}{b^{2}}c_{43}^{2} \biggr),} \\ &{s_{114} = c_{41}\biggl( 0.63\frac{k_{3}^{3}}{l^{3}}c_{42}^{3} - 0.33\frac{3k_{3}^{2}k_{4}}{l^{2}b}c_{42}^{2}c_{43}} \\ &{\phantom{s_{114} =} {}+ 0.07\frac{3k_{3}k_{4}^{2}}{lb^{2}}c_{42}c_{43}^{2} - 0.87\frac{k_{4}^{3}}{b^{3}}c_{43}^{3} \biggr),} \\ &{s_{115} = 0.3967c_{41}c_{44}^{3}, \quad s_{116} = 0.5509c_{45},} \\ &{s_{117} = 1.0012c_{45}\frac{2k_{1}}{l} \frac{\mathrm{d}l}{\mathrm{d}t},} \\ &{ s_{118} = 0.2868c_{45}\frac{2k_{3}}{l} \frac{\mathrm{d}l}{\mathrm{d}t}.} \end{aligned}$$

The coefficients of α i in Eq. (20a) are obtained as

$$\begin{aligned} &{\alpha_{17}' = r_{15} + r_{19} + r_{23} + r_{27} + r_{35} + r_{59},} \\ &{\alpha_{18}' = r_{16} + r_{20} + r_{24} + r_{28} + r_{36} + r_{60},} \\ &{\alpha_{19}' = r_{17} + r_{21} + r_{25} + r_{29} + r_{37} + r_{61},} \\ &{\alpha_{20}' = r_{18} + r_{22} + r_{26} + r_{30} + r_{38} + r_{62},} \\ &{\alpha_{21}' = r_{31} + r_{39} + r_{43} + r_{47} + r_{51} + r_{55},} \\ &{\alpha_{22}' = r_{32} + r_{40} + r_{44} + r_{48} + r_{52} + r_{56},} \\ &{\alpha_{23}' = r_{33} + r_{41} + r_{45} + r_{49} + r_{53} + r_{57},} \\ &{\alpha_{24}' = r_{34} + r_{42} + r_{46} + r_{50} + r_{54} + r_{58},} \\ &{\alpha_{25}' = r_{83} + r_{87} + r_{97},\quad \alpha_{26}' = r_{84} + r_{88} + r_{98},} \\ &{\alpha_{27}' = r_{85} + r_{89} + r_{95},\quad \alpha_{28}' = r_{86} + r_{90} + r_{96}.} \\ &{\alpha_{1} = r_{116},\quad \alpha_{2} = r_{105} + r_{117},\quad \alpha_{3} = r_{118},} \\ &{\alpha_{4} = r_{11} + r_{91} + r_{93} + r_{99} + r_{101} + r_{103}} \\ &{\phantom{\alpha_{4} =} {}- \frac{\alpha_{17}'}{( k_{11} + k_{12} )}k_{24}a_{16} - \frac{\alpha_{19}'}{( l_{11} + l_{12} )}l_{24}a_{16}} \\ &{\phantom{\alpha_{4} =} {}- \frac{\alpha_{25}'}{( k_{31} + k_{32} + k_{41} )}( k_{33} + k_{37} + k_{39} )} \\ &{\phantom{\alpha_{4} =} {} - \frac{\alpha_{26}'}{( l_{31} + l_{32} + l_{41} )}( l_{33} + l_{37} + l_{39} )} \\ &{\phantom{\alpha_{4} =} {}- \frac{\alpha_{27}'}{( m_{31} + m_{32} + m_{41} )}( m_{33} + m_{37} + m_{39} )} \\ &{\phantom{\alpha_{4} =} {} - \frac{\alpha_{28}'}{( n_{31} + n_{32} + n_{41} )}( n_{33} + n_{37} + n_{39} ),} \\ &{\alpha_{5} = r_{13},} \\ &{\alpha_{6} = r_{12} + r_{14} + r_{92} + r_{94} + r_{100} + r_{102} + r_{104}} \\ &{\phantom{\alpha_{6} =} {} - \frac{\alpha_{18}'}{( k_{11} + k_{12} )}k_{24}a_{16} - \frac{\alpha_{20}'}{( l_{11} + l_{12} )}l_{24}a_{16}} \\ &{\phantom{\alpha_{6} =} {}- \frac{\alpha_{25}'}{( k_{31} + k_{32} + k_{41} )}( k_{31} + k_{32} + k_{41} )} \\ &{\phantom{\alpha_{6} =} {} - \frac{\alpha_{26}'}{( l_{31} + l_{32} + l_{41} )}( l_{34} + l_{38} + l_{40} )} \\ &{\phantom{\alpha_{6} =} {}- \frac{\alpha_{27}'}{( m_{31} + m_{32} + m_{41} )}( m_{34} + m_{38} + m_{40} )} \\ &{\phantom{\alpha_{6} =} {} - \frac{\alpha_{28}'}{( n_{31} + n_{32} + n_{41} )}( n_{34} + n_{38} + n_{40} ),} \end{aligned}$$
(35)
$$\begin{aligned} &{\alpha_{7} = r_{63} + r_{67} + r_{71} + r_{75} + r_{79} + r_{106}} \\ &{\phantom{\alpha_{7} =} {}- \frac{\alpha_{17}'}{( k_{11} + k_{12} )}( k_{15} + k_{18} + k_{21} ) } \\ &{\phantom{\alpha_{7} =} {}- \frac{\alpha_{19}'}{( l_{11} + l_{12} )}( l_{15} + l_{18} + l_{21} )} \\ &{\phantom{\alpha_{7} =} {}- \frac{\alpha_{21}'}{( m_{11} + m_{12} )}( m_{15} + m_{18} + m_{21} )} \\ &{\phantom{\alpha_{7} =} {} - \frac{\alpha_{23}'}{( n_{11} + n_{12} )}( n_{15} + n_{18} + n_{21} ),} \\ &{\alpha_{8} = r_{64} + r_{68} + r_{72} + r_{76} + r_{80} + 3r_{107}} \\ &{\phantom{\alpha_{8} =} {}- \frac{\alpha_{17}'}{( k_{11} + k_{12} )}( k_{16} + k_{19} + k_{22} )} \\ &{\phantom{\alpha_{8} =} {}- \frac{\alpha_{18}'}{( k_{11} + k_{12} )}( k_{15} + k_{18} + k_{21} )} \\ &{\phantom{\alpha_{8} =} {}- \frac{\alpha_{19}'}{( l_{11} + l_{12} )}( l_{16} + l_{19} + l_{22} )} \\ &{\phantom{\alpha_{8} =} {} - \frac{\alpha_{20}'}{( l_{11} + l_{12} )}( l_{15} + l_{18} + l_{21} )} \\ &{\phantom{\alpha_{8} =} {}- \frac{\alpha_{21}'}{( m_{11} + m_{12} )}( m_{16} + m_{19} + m_{22} )} \\ &{\phantom{\alpha_{8} =} {} - \frac{\alpha_{22}'}{( m_{11} + m_{12} )}( m_{15} + m_{18} + m_{21} )} \\ &{\phantom{\alpha_{8} =} {}- \frac{\alpha_{23}'}{( n_{11} + n_{12} )}( n_{16} + n_{19} + n_{22} )} \\ &{\phantom{\alpha_{8} =} {} - \frac{\alpha_{24}'}{( n_{11} + n_{12} )}( n_{15} + n_{18} + n_{21} ),} \end{aligned}$$
$$\begin{aligned} &{\alpha_{9} = r_{65} + r_{69} + r_{73} + r_{77} + r_{81} + 3r_{108}} \\ &{\phantom{\alpha_{9} =} {} - \frac{\alpha_{17}'}{( k_{11} + k_{12} )}( k_{17} + k_{20} + k_{23} )} \\ &{\phantom{\alpha_{9} =} {} - \frac{\alpha_{18}'}{( k_{11} + k_{12} )}( k_{16} + k_{19} + k_{22} )} \\ &{\phantom{\alpha_{9} =} {}- \frac{\alpha_{19}'}{( l_{11} + l_{12} )}( l_{17} + l_{20} + l_{23} )} \\ &{\phantom{\alpha_{9} =} {} - \frac{\alpha_{20}'}{( l_{11} + l_{12} )}( l_{16} + l_{19} + l_{22} )} \\ &{\phantom{\alpha_{9} =} {}- \frac{\alpha_{21}'}{( m_{11} + m_{12} )}( m_{17} + m_{20} + m_{23} )} \\ &{\phantom{\alpha_{9} =} {} - \frac{\alpha_{22}'}{( m_{11} + m_{12} )}( m_{16} + m_{19} + m_{22} )} \\ &{\phantom{\alpha_{9} =} {}- \frac{\alpha_{23}'}{( n_{11} + n_{12} )}( n_{17} + n_{20} + n_{23} )} \\ &{\phantom{\alpha_{9} =} {} - \frac{\alpha_{24}'}{( n_{11} + n_{12} )}( n_{16} + n_{19} + n_{22} ),} \\ &{\alpha_{10} = r_{66} + r_{70} + r_{74} + r_{78} + r_{82} + r_{114}} \\ &{\phantom{\alpha_{10} =} {} - \frac{\alpha_{18}'}{( k_{11} + k_{12} )}( k_{17} + k_{20} + k_{23} )} \\ &{\phantom{\alpha_{10} =} {} - \frac{\alpha_{20}'}{( l_{11} + l_{12} )}( l_{17} + l_{20} + l_{23} )} \\ &{\phantom{\alpha_{10} =} {}- \frac{\alpha_{22}'}{( m_{11} + m_{12} )}( m_{17} + m_{20} + m_{23} )} \\ &{\phantom{\alpha_{10} =} {} - \frac{\alpha_{24}'}{( n_{11} + n_{12} )}( n_{17} + n_{20} + n_{23} ),} \\ &{\alpha_{11} = 3r_{109},\quad \alpha_{12} = 3r_{110},\quad \alpha_{13} = 3r_{111},} \\ &{ \alpha_{14} = 3r_{112},\quad \alpha_{15} = 6r_{113},\quad \alpha_{16} = r_{115}.} \end{aligned}$$

The coefficients of β i in Eq. (20b) are obtained as

$$\begin{aligned} &{\beta_{17}' = s_{15} + s_{19} + s_{23} + s_{27} + s_{35} + s_{59},} \\ &{\beta_{18}' = s_{16} + s_{20} + s_{24} + s_{28} + s_{36} + s_{60},} \\ &{\beta_{19}' = s_{17} + s_{21} + s_{25} + s_{29} + s_{37} + s_{61},} \\ &{\beta_{20}' = s_{18} + s_{22} + s_{26} + s_{30} + s_{38} + s_{62},} \\ &{\beta_{21}' = s_{31} + s_{39} + s_{43} + s_{47} + s_{51} + s_{55},} \\ &{\beta_{22}' = s_{32} + s_{40} + s_{44} + s_{48} + s_{52} + s_{56},} \\ &{\beta_{23}' = s_{33} + s_{41} + s_{45} + s_{49} + s_{53} + s_{57},} \\ &{\beta_{24}' = s_{34} + s_{42} + s_{46} + s_{50} + s_{54} + s_{58},} \\ &{\beta_{25}' = s_{83} + s_{87} + s_{97},\quad \beta_{26}' = s_{84} + s_{88} + s_{98},} \\ &{\beta_{27}' = s_{85} + s_{89} + s_{95},\quad \beta_{28}' = s_{86} + s_{90} + s_{96}.} \\ &{\beta_{1} = s_{116},\quad \beta_{2} = s_{105} + s_{118},\quad \beta_{3} = s_{117},} \\ &{\beta_{4} = s_{12} + s_{92} + s_{94} + s_{100} + s_{102} + s_{104}} \\ &{\phantom{\beta_{4} =} {}- \frac{\beta_{18}'}{( k_{11} + k_{12} )}k_{24}a_{16} - \frac{\beta_{20}'}{( l_{11} + l_{12} )}l_{24}a_{16}} \\ &{\phantom{\beta_{4} =} {}- \frac{\beta_{25}'}{( k_{31} + k_{32} + k_{41} )}( k_{34} + k_{38} + k_{40} )} \\ &{\phantom{\beta_{4} =} {} - \frac{\beta_{26}'}{( l_{31} + l_{32} + l_{41} )}( l_{34} + l_{38} + l_{40} )} \\ &{\phantom{\beta_{4} =} {}- \frac{\beta_{27}'}{( m_{31} + m_{32} + m_{41} )}( m_{34} + m_{38} + m_{40} )} \\ &{\phantom{\beta_{4} =} {} - \frac{\beta_{28}'}{( n_{31} + n_{32} + n_{41} )}( n_{34} + n_{38} + n_{40} ),} \\ &{\beta_{5} = s_{14},} \\ &{\beta_{6} = s_{11} + s_{91} + s_{93} + s_{99} + s_{101} + s_{103}} \\ &{\phantom{\beta_{6} =} {} - \frac{\beta_{17}'}{( k_{11} + k_{12} )}k_{24}a_{16} - \frac{\beta_{19}'}{( l_{11} + l_{12} )}l_{24}a_{16}} \\ &{\phantom{\beta_{6} =} {}- \frac{\beta_{25}'}{( k_{31} + k_{32} + k_{41} )}( k_{33} + k_{37} + k_{39} )} \\ &{\phantom{\beta_{6} =} {} - \frac{\beta_{26}'}{( l_{31} + l_{32} + l_{41} )}( l_{33} + l_{37} + l_{39} )} \\ &{\phantom{\beta_{6} =} {}- \frac{\beta_{27}'}{( m_{31} + m_{32} + m_{41} )}( m_{33} + m_{37} + m_{39} )} \\ &{\phantom{\beta_{6} =} {} - \frac{\beta_{28}'}{( n_{31} + n_{32} + n_{41} )}( n_{33} + n_{37} + n_{39} ),} \end{aligned}$$
(36)
$$\begin{aligned} &{\beta_{7} = s_{63} + s_{67} + s_{71} + s_{75} + s_{79} + s_{106}} \\ &{\phantom{\beta_{7} =} {} - \frac{\beta_{17}'}{( k_{11} + k_{12} )}( k_{15} + k_{18} + k_{21} )} \\ &{\phantom{\beta_{7} =} {} - \frac{\beta_{19}'}{( l_{11} + l_{12} )}( l_{15} + l_{18} + l_{21} )} \\ &{\phantom{\beta_{7} =} {}- \frac{\beta_{21}'}{( m_{11} + m_{12} )}( m_{15} + m_{18} + m_{21} )} \\ &{\phantom{\beta_{7} =} {} - \frac{\beta_{23}'}{( n_{11} + n_{12} )}( n_{15} + n_{18} + n_{21} ),} \\ &{\beta_{8} = s_{64} + s_{68} + s_{72} + s_{76} + s_{80} + 3s_{107}} \\ &{\phantom{\beta_{8} =} {}- \frac{\beta_{17}'}{( k_{11} + k_{12} )}( k_{16} + k_{19} + k_{22} )} \\ &{\phantom{\beta_{8} =} {} - \frac{\beta_{18}'}{( k_{11} + k_{12} )}( k_{15} + k_{18} + k_{21} )} \\ &{\phantom{\beta_{8} =} {}- \frac{\beta_{19}'}{( l_{11} + l_{12} )}( l_{16} + l_{19} + l_{22} )} \\ &{\phantom{\beta_{8} =} {} - \frac{\beta_{20}'}{( l_{11} + l_{12} )}( l_{15} + l_{18} + l_{21} )} \\ &{\phantom{\beta_{8} =} {}- \frac{\beta_{21}'}{( m_{11} + m_{12} )}( m_{16} + m_{19} + m_{22} )} \\ &{\phantom{\beta_{8} =} {} - \frac{\beta_{22}'}{( m_{11} + m_{12} )}( m_{15} + m_{18} + m_{21} )} \\ &{\phantom{\beta_{8} =} {}- \frac{\beta_{23}'}{( n_{11} + n_{12} )}( n_{16} + n_{19} + n_{22} )} \\ &{\phantom{\beta_{8} =} {} - \frac{\beta_{24}'}{( n_{11} + n_{12} )}( n_{15} + n_{18} + n_{21} ),} \end{aligned}$$
$$\begin{aligned} &{\beta_{9} = s_{65} + s_{69} + s_{73} + s_{77} + s_{81} + 3s_{108}} \\ &{\phantom{\beta_{9} =} {} - \frac{\beta_{17}'}{( k_{11} + k_{12} )}( k_{17} + k_{20} + k_{23} )} \\ &{\phantom{\beta_{9} =} {} - \frac{\beta_{18}'}{( k_{11} + k_{12} )}( k_{16} + k_{19} + k_{22} )} \\ &{\phantom{\beta_{9} =} {}- \frac{\beta_{19}'}{( l_{11} + l_{12} )}( l_{17} + l_{20} + l_{23} )} \\ &{\phantom{\beta_{9} =} {} - \frac{\beta_{20}'}{( l_{11} + l_{12} )}( l_{16} + l_{19} + l_{22} )} \\ &{\phantom{\beta_{9} =} {}- \frac{\beta_{21}'}{( m_{11} + m_{12} )}( m_{17} + m_{20} + m_{23} )} \\ &{\phantom{\beta_{9} =} {} - \frac{\beta_{22}'}{( m_{11} + m_{12} )}( m_{16} + m_{19} + m_{22} )} \\ &{\phantom{\beta_{9} =} {}- \frac{\beta_{23}'}{( n_{11} + n_{12} )}( n_{17} + n_{20} + n_{23} )} \\ &{\phantom{\beta_{9} =} {} - \frac{\beta_{24}'}{( n_{11} + n_{12} )}( n_{16} + n_{19} + n_{22} ),} \\ &{\beta_{10} = s_{66} + s_{70} + s_{74} + s_{78} + s_{82} + s_{114}} \\ &{\phantom{\beta_{9} =} {} - \frac{\beta_{18}'}{( k_{11} + k_{12} )}( k_{17} + k_{20} + k_{23} )} \\ &{\phantom{\beta_{9} =} {} - \frac{\beta_{20}'}{( l_{11} + l_{12} )}( l_{17} + l_{20} + l_{23} )} \\ &{\phantom{\beta_{9} =} {}- \frac{\beta_{22}'}{( m_{11} + m_{12} )}( m_{17} + m_{20} + m_{23} )} \\ &{\phantom{\beta_{9} =} {} - \frac{\beta_{24}'}{( n_{11} + n_{12} )}( n_{17} + n_{20} + n_{23} ),} \\ &{\beta_{11} = 3s_{109},\quad \beta_{12} = 3s_{110},\quad \beta_{13} = 3s_{111},} \\ &{\beta_{14} = 3s_{112},\quad \beta_{15} = 6s_{113},\quad \beta_{16} = s_{115}.} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Lu, S.F. & Yang, X.D. Analysis on nonlinear dynamics of a deploying composite laminated cantilever plate. Nonlinear Dyn 76, 69–93 (2014). https://doi.org/10.1007/s11071-013-1111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1111-5

Keywords

Navigation