Skip to main content

Advertisement

Log in

Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A new model for Greece depicting, at a national scale, the spatial distribution of areas prone to landslide phenomena, taking into account preparatory and triggering criteria, is presented. This is a baseline study for prioritizing research in hazardous areas with more detail. Landslide occurrence is very high in certain areas of the Greek territory, such as Western Greece. Analysis is performed by applying two models, both based on slopes and geotechnical data, earthquake occurrence and precipitation. The first, which yields better results, also takes into account land use data. Since there was no access to landslide inventories, landslide susceptibility was performed on empirical estimates of the aforementioned criteria, using the analytic hierarchy process in order to derive the proper weights for each criterion. The final outcome is calculated based on the weighted linear combination of the above-mentioned criteria. The present study covers the area of Greece with an accuracy of 500 m × 500 m grid cell size. Results have been validated with observed events, landsliding urban areas and other studies, thus identifying landslide prone areas in a satisfying manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggelidis Ch, Mpellas M (1998) Landslides in the community of Ropoto. In: Proceedings of the 8th international congress, Patras. Bulletin of the geological society of Greece, vol XXXII/4. pp 105–109 (in Greek)

  • Ambraseys N (2009) Earthquakes in the eastern Mediterranean and the Middle East: a multidisciplinary study of 2000 years of seismicity. Cambridge University Press, Cambridge, p 947

    Book  Google Scholar 

  • Ambraseys NN, Menu JM (1988) Earthquake-induced ground displacements. Earthq Eng Struct Dyn 16:985–1006

    Article  Google Scholar 

  • Ambraseys N, Srbulov M (1994) Attenuation of earthquake-induced ground displacements. Earthq Eng Struct Dyn 23:467–487

    Article  Google Scholar 

  • Ambraseys N, Srbulov M (1995) Earthquake induced displacements of slopes. Soil Dyn Earthq Eng 14:59–71

    Article  Google Scholar 

  • Anagnostopoulos C, Georgiadis M (1997) Analysis of rainfall data and correlation to landslides: the case of Sykia-Pieria, Greece. In: Proceedings of the international symposium of the IAEG on engineering geology and the environment. pp 483–487

  • Antoniou A, Lekkas E (2010) Rockfall susceptibility map for Athinios port, Santorini Island, Greece. Geomorphology 118:152–166

    Article  Google Scholar 

  • Banitsiotou ID, Tsapanos TM, Margaris VN, Hatzidimitriou PM (2004) Estimation of the seismic hazard parameters for various sites in Greece using a probabilistic approach. Nat Hazards Earth Syst Sci 4(3):399–405

    Article  Google Scholar 

  • Bathrellos GD, Kalivas DP, Skilodimou HD (2009) GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, central Greece. Estud Geol 65(1):49–65

    Article  Google Scholar 

  • Baum RL, Coe JA, Godt JW, Harp EL, Reid ME, Savage WZ, Schulz WH, Brien DL, Chleborad AF, McKenna JP, Michael JA (2005) Regional landslide-hazard assessment for Seattle, Washington, USA. Landslides 2:266–279. doi:10.1007/s10346-005-0023-y

    Article  Google Scholar 

  • Bellas M, Voulgaridis G (2014) Study of a landslide in Dafnoula Village, Epirus Region, Greece. In: Sassa K et al (eds) Landslide science for a safer geoenvironment, vol 2. doi:10.1007/978-3-319-05050-8_107

  • Bhandary NP, Dahal RK, Timilsina M, Yatabe R (2013) Rainfall event-based landslide susceptibility zonation mapping. Nat Hazards 69:365–388. doi:10.1007/s11069-013-0715-x

    Article  Google Scholar 

  • Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide: addendum 2000. European Environment Agency, Copenhagen, p 104

    Google Scholar 

  • Bozzano F, Mazzanti P, Prestininzi A, Mugnozza GS (2010) Research and development of advanced technologies for landslide hazard analysis in Italy. Landslides 7:381–385. doi:10.1007/s10346-010-0208-x

    Article  Google Scholar 

  • Burton PW, Bayliss TJ (2013) Seismic hazard across Bulgaria and neighbouring areas: extreme magnitude recurrence and strong ground shaking. Nat Hazards 68(2):1155–1201

    Article  Google Scholar 

  • Burton PW, Xua Y, Tselentis GA, Sokos E, Aspinall W (2003) Strong ground acceleration seismic hazard in Greece and neighboring regions. Soil Dyn Earthq Eng 23:159–181

    Article  Google Scholar 

  • Calò F, Ardizzone F, Castaldo R, Lollino P, Tizzani P, Guzzetti F, Lanari R, Angeli MG, Pontoni F, Manunta M (2014) Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy. Remote Sens Environ 142:69–82

    Article  Google Scholar 

  • Cascini L, Fornaro G, Peduto D (2010) Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng Geol 112:29–42

    Article  Google Scholar 

  • Champati Ray PK, Dimri S, Lakhera RC, Sati S (2007) Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides 4:101–111. doi:10.1007/s10346-006-0068-6

    Article  Google Scholar 

  • Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23

    Article  Google Scholar 

  • Chousianitis K, Del Gaudio V, Kalogeras I, Ganas A (2014) Predictive model of arias intensity and Newmark displacement for regional scale evaluation of earthquake-induced landslide hazard in Greece. Soil Dyn Earthq Eng 65:11–29

    Article  Google Scholar 

  • Chousianitis K, Del Gaudio V, Sabatakakis N, Kavoura K, Drakatos G, Bathrellos GD, Skilodimou HD (2016) Assessment of earthquake-induced landslide hazard in Greece: from arias intensity to spatial distribution of slope resistance demand. Bull Seismol Soc Am 106(1):174–188. doi:10.1785/0120150172

    Article  Google Scholar 

  • Chung CJF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65(12):1389–1399

    Google Scholar 

  • Coe JA, Michael JA, Crovelli RA, Savage WZ, Larpade WT, Nashem WD (2012) Probabilistic assessment of precipitation-triggered landslides using historical records of landslide occurrence, Seattle, Washington. Environ Eng Geosci 10(2):103–122

    Article  Google Scholar 

  • Colombo A, Lanteri L, Ramasco M, Troisi C (2005) Systematic GIS-based landslide inventory as the first step for effective landslide-hazard management. Landslides 2:291–301. doi:10.1007/s10346-005-0025-9

    Article  Google Scholar 

  • Daneshvar MRM (2014) Landslide susceptibility zonation using analytical hierarchy process and GIS for the Bojnurd region, northeast of Iran. Landslides 11:1079–1091. doi:10.1007/s10346-013-0458-5

    Article  Google Scholar 

  • Dounias G, Belokas G (2010) Investigation of the Tsakona large landslide with limit equilibrium analyses. In: Proceedings of the 6th Hellenic conference on geotechnical and geoenvironmental engineering, Volos. (in Greek)

  • Dounias G, Belokas G, Marinos P, Kavvadas M (2006) The large landslide of Tsakona at the Tripoli–Kalamata National Road. In: Proceedings of the 5th Panhellenic congress of geotechnical and geo-environmental engineering, technical chamber of Greece, Xanthi. 31/5/2006–2/6/2006. (in Greek)

  • EAK (2003) Greek seismic code. Earthquake Planning and Protection Organization, Athens

    Google Scholar 

  • Ebdon D (1985) Statistics in geography. Blackwell, Oxford, p 232

    Google Scholar 

  • El Morjani ZEA (2011) Methodology document for the WHO e-atlas of disaster risk, vol 1. Exposure to natural hazards Version 2.0. Landslide hazard modeling

  • Eleftheriou A (1993) Map of landsliding urban areas of the Greek territory. Institute of Geology and Mineral Exploration, Athens

    Google Scholar 

  • Epstein B, Lomnitz C (1966) A model for occurrences of large earthquakes. Nature 211:954–956

    Article  Google Scholar 

  • Esmali A, Ahmadi H (2003) Using GIS and RS in mass movements hazard zonation: a case study in germichay watershed, Ardebil, Iran. Poster session, map Asia conference 2003

  • Ferentinou MD, Sakellariou M, Matziaris V, Charalambous S (2006) An introduced methodology for estimating landslide hazard for seismic and rainfall induced landslides in a geographical information system environment. In: Proceedings of geohazards, engineering conferences international

  • Foumelis M, Lekkas E, Parcharidis I (2004) Landslide susceptibility mapping by GIS-based qualitative weighting procedure in Corinth area. In: Proceedings of the 10th international congress, Thessaloniki. Bulletin of the geological society of Greece, vol XXXVI

  • Frigerio S, Schenato L, Bossi G, Cavalli M, Mantovani M, Marcato G, Pasuto A (2014) A web-based platform for automatic and continuous landslide monitoring: the Rotolon (Eastern Italian Alps) case study. Comput Geosci 63:96–105. doi:10.1016/j.cageo.2013.10.015

    Article  Google Scholar 

  • Gaprindashvili G, Van Westen CJ (2016) Generation of a national landslide hazard and risk map for the country of Georgia. Nat Hazards 80:69–101. doi:10.1007/s11069-015-1958-5

    Article  Google Scholar 

  • Gariano SL, Petrucci O, Guzzetti F (2015) Changes in the occurrence of rainfall-induced landslides in Calabria, southern Italy, in the 20th century. Nat Hazards Earth Syst Sci 15:2313–2330. doi:10.5194/nhess-15-2313-2015

    Article  Google Scholar 

  • Georgopoulos IO, Vardoulakis I (2000) Study of the Malakasa landslide of 18-2-1995 by using combined block failure mechanisms. In: Proceedings of the 4th national congress of geotechnical engineering, Greece. (in Greek)

  • Gournelos T, Nastos PT, Chalkias D, Tsagas D, Theodorou D (2010) Landslide movements related to precipitation. Analysis of a statistical sample from the Greek area. In: Proceedings of the 12th international congress, Patras. Bulletin of the geological society of Greece

  • Greco R, Giorgio M, Capparelli G, Versace P (2013) Early warning of rainfall-induced landslides based on empirical mobility function predictor. Eng Geol 153:68–79

    Article  Google Scholar 

  • Günther A, Reichenbach P, Malet JP, Van Den Eeckhaut M, Hervás J, Dashwood C, Guzzetti F (2013) Tier-based approaches for landslide susceptibility assessment in Europe. Landslides 10:529–546. doi:10.1007/s10346-012-0349-1

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Hellenic National Meteorological Service: The climate of Greece. http://www.hnms.gr/hnms/english/meteorology/full_story_html?dr_url=%2Fhnms%2Fdocrep%2Fdocs%2Fmisc%2FClimateOfGreece. Accessed 27 May 2015

  • Herrera G, Gutiérrez F, García-Davalillo JC, Guerrero J, Notti D, Galve JP, Fernández-Merodo JA, Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens Environ 128:31–43

    Article  Google Scholar 

  • Hong A, Adler RF (2008) Predicting global landslide spatiotemporal distribution: integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates. Int J Sediment Res 23:249–257

    Article  Google Scholar 

  • Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256. doi:10.1007/s11069-006-9104-z

    Article  Google Scholar 

  • Hyun KC, Min S, Choi H, Park J, Lee IM (2015) Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels. Tunn Undergr Space Technol 49:121–129

    Article  Google Scholar 

  • Ilia I, Tsangaratos P (2015) Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides. doi:10.1007/s10346-015-0576-3

    Google Scholar 

  • International disaster database EM-DAT: the OFDA/CRED international disaster database. Université catholique de Louvain, Brussels. http://www.emdat.net/. Accessed 26 May 2015

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database. (http://srtm.csi.cgiar.org)

  • Jelínek R, Wagner P (2007) Landslide hazard zonation by deterministic analysis (Veľká Čausa landslide area, Slovakia). Landslides 4:339–350. doi:10.1007/s10346-007-0089-9

    Article  Google Scholar 

  • Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. Transp Res Rec 1411:9–17

  • Kalantzi F, Doutsou I, Koukouvelas I (2010) Historical landslides in the prefecture of Ioannina: collection and analysis of data. In: Proceedings of the 12th international congress, Patras. Bulletin of the geological society of Greece

  • Karras G (1973) Climate classification of Greece. Ph.D. Thesis, National and Kapodistrian University of Athens

  • Kassaras I, Kalantoni D, Benetatos Ch, Kaviris G, Michalaki K, Sakellariou N, Makropoulos K (2015) Seismic damage scenarios in Lefkas old town (W.Greece). Bull Earthq Eng. doi:10.1007/s10518-015-9789-z

    Google Scholar 

  • Kavounidis S, Gazetas G, Rozos D, Tsiambaos G (2010) Findings of the committee of experts for landslides at tempi. Technical chamber of Greece, internal report

  • Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput Geosci 52:398–408

    Article  Google Scholar 

  • Kirschbaum DB, Adler R, Hong Y, Hill S, Lerner-Lam AL (2010) A global landslide catalog for hazard applications: method, results, and limitations. Nat Hazards 52:561–575. doi:10.1007/s11069-009-9401-4

    Article  Google Scholar 

  • Kirschbaum D, Stanley T, Zhou Y (2015) Spatial and temporal analysis of a global landslide catalog. Geomorphology 249:4–15

    Article  Google Scholar 

  • Koukis G, Ziourkas C (1991) Slope instability phenomena in Greece: a statistical analysis. Bull Int As Eng Geol 43:47

    Article  Google Scholar 

  • Koukis G, Andronopoulos V, Rozos D, Kinigalaki M, Tzitziras A, Pogiatzi E, Garivaldi A (1993) Geotechnical map of Greece, scale 1:500,000. Institute of geology and mineral exploration, Athens

    Google Scholar 

  • Koukis G, Tsiambaos G, Sabatakakis N (1994) Slope movements in the Greek territory: a statistical approach. Proceedings of 7th international IAEG congress. Balkema, Rotterdam, pp 4621–4628

    Google Scholar 

  • Koukis G, Tsiambaos G, Sabatakakis N (1996) Landslides in Greece: research evolution and quantitative analysis. In: Senneset K (ed) In: Proceedings of 7th international symposium on landslides. Balkema, Rotterdam, pp 1935–1940

    Google Scholar 

  • Koukis G, Tsiambaos G, Sabatakakis N (1997) Landslide movements in Greece: engineering geological characteristics and environmental consequences. Proceedings of international symposium of engineering. Geology and the Envar, IAEG. Balkema, Rotterdam, pp 789–792

    Google Scholar 

  • Koukis G, Sabatakakis N, Nikolaou N, Loupasakis C (2005) Landslide hazard zonation in Greece. In: Proceedings of the first general assembly of the international consortium on landslides. pp 291–296

  • Koukis G, Sabatakakis N, Ferentinou M, Lainas S, Alexiadou X, Panagopoulos A (2009) Landslide phenomena related to major fault tectonics: rift zone of Corinth Gulf, Greece. Bull Eng Geol Environ 68:215–229. doi:10.1007/s10064-008-0184-8

    Article  Google Scholar 

  • Kouli M, Loupasakis C, Soupios P, Vallianatos F (2010) Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece. Nat Hazards 52:599–621. doi:10.1007/s11069-009-9403-2

    Article  Google Scholar 

  • Kouli M, Loupasakis C, Soupios P, Rozos D, Vallianatos F (2014) Landslide susceptibility mapping by comparing the WLC and WofE multi-criteria methods in the West Crete Island, Greece. Environ Earth Sci 12:5197–5219

    Article  Google Scholar 

  • Kouskouna V (1991) Factors modifying the macroseismic intensity attenuation in central Greece: an attempt for the seismic hazard assessment of the area. Ph.D. Thesis, Athens University, p 317

  • Kouskouna V (2010) Testing the European Macroseismic scale in Greece: cases of damaging and destructive earthquakes. In: 32nd general assembly, poster session, European seismological commission, Sep 6–10, Montpellier

  • Kouskouna V, Kaviris G (2014) Seismic hazard study in messinia (SW Peloponnese) area. In: Proceedings of 2nd ECEES, Istanbul

  • Kouskouna V, Chailas S, Makropoulos KC, Michalopoulou D, Drakopoulos J (1996) Simulation of macroseismic field in central Greece. Ann Geofis 39(5):1115–1124

    Google Scholar 

  • Kurtz C, Stumpf A, Malet J, Gançarski P, Puissant A, Passat N (2014) Hierarchical extraction of landslides from multiresolution remotely sensed optical images. ISPRS J Photogramm Remote Sens 87:122–136

    Article  Google Scholar 

  • Lainas S, Sabatakakis N, Koukis G (2015) Rainfall thresholds for possible landslide initiation in wildfire-affected areas of western Greece. Bull Eng Geol Environ. doi:10.1007/s10064-015-0762-5

    Google Scholar 

  • Lateltin O, Haemmig C, Raetzo H, Bonnard C (2005) Landslide risk management in Switzerland. Landslides 2:313–320. doi:10.1007/s10346-005-0018-8

    Article  Google Scholar 

  • Lee CT, Huang CC, Lee JF, Pan KL, Lin ML, Dong JJ (2008) Statistical approach to earthquake-induced landslide susceptibility. Eng Geol 100:43–58

    Article  Google Scholar 

  • Lekkas E, Antoniou A (2004) Addressing landslides in areas of particular environmental importance: the case of red rock Island. In: Proceedings of the 7th Panhellenic geographical conference, Greek Geographical Society, vol 1. Mytilini, pp 136–143. (in Greek)

  • Lekkas E, Logos E (1991) The landsliding phenomena at Livadi Larisa. In: Proceedings of the 1st scientific congress, geosciences 7 environment. University of Patras, Faculty of Geology, Patras. (in Greek)

  • Lekkas E, Xadzinakos I, Vasileioy I (1991) The landsliding phenomena of eastern Thessaly (recording, classification, causes, consequences, confrontation). In: Proceedings of the 1st scientific congress, geosciences 7 environment. University of Patras, Faculty of Geology, Patras. (in Greek)

  • Lekkas E, Vasilopoulou S, Hadzinakos I (1998a) GIS aided landslide management in Ropoto, Trikala, Greece: Raster-vector data treatment. In: Moore DP, Hungr O (eds) Proceedings of the 8th international congress of the international association for engineering geology (IAEG) “engineering geology-a global view from the Pacific Rim”, vol 3. Vancouver, pp 1759–1763

  • Lekkas E, Vasilopoulou S, Hadzinakos I (1998b) Engineering geological conditions: landslide phenomena in the village of Ropoto, Trikala, Greece. In: Moore DP, Hungr O (eds) Proceedings of the 8th international congress of the international association for engineering geology (IAEG) “engineering geology-a global view from the Pacific Rim”, vol 3. Vancouver, pp 1807–1812

  • Lekkas E, Sakellariou D, Bertakis G, Lozios S (1998c) Location of geohazards at Rhodes island, SE Greece. In: Moore DP, Hungr O (eds) Proceedings of the 8th international congress of the international association for engineering geology (IAEG) “engineering geology-a global view from the Pacific Rim”, vol 2. Vancouver, pp 953–958

  • Lekkas E, Danamos G, Lozios S, Skourtsos E, Verikiou E (2004) The geographical distribution of landslides in Lefkada earthquake (14 Aug 2003) and the factors that favored the occurrence (in Greek). In: Proceedings of the 10th international congress of the Greek Geological Society, volume of extended abstracts, Thessaloniki. pp 130–131

  • Lekkas E, Alexoudi V, Lialiaris I (2013) Reduction of rockfall risk of the teleferik area of Santorini–Greece. In: Proceedings of the 13th international congress of the Geological Society of Greece, Chania, Crete

  • Lorentz JF, Calijuri ML, Gomes Marques E, Carreiro Baptista A (2016) Multicriteria analysis applied to landslide susceptibility mapping. Nat Hazards 83:41–52. doi:10.1007/s11069-016-2300-6

    Article  Google Scholar 

  • Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47:411–435. doi:10.1007/s11069-008-9230-x

    Article  Google Scholar 

  • Makropoulos KC, Burton PW (1985a) Seismic hazard in Greece: i magnitude recurrence. Tectonophysics 117:205–257

    Article  Google Scholar 

  • Makropoulos KC, Burton PW (1985b) Seismic hazard in Greece: II ground acceleration. Tectonophysics 117:259–294

    Article  Google Scholar 

  • Makropoulos KC, Burton PW (1986) HAZAN: a fortran program to evaluate seismic-hazard parameters using gumbel’s theory of extreme value statistics. Comput Geosci 12(1):29–46

    Article  Google Scholar 

  • Makropoulos K, Kaviris G, Kouskouna V (2012) An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat Hazards Earth Syst Sci 12:1425–1430

    Article  Google Scholar 

  • Martha TR, van Westen CJ, Kerle N, Jetten V, Kumar KV (2013) Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology 184:139–150

    Article  Google Scholar 

  • Matziaris V, Ferentinou M, Angelopoulou O, Karanasiou S, Sakellariou M (2007) Landslide hazard analysis: a case study in Kerasia village (Prefecture of Karditsa). In: Proceedings of the 11th international congress, Athens, bulletin of the geological society of Greece, vol XXXX

  • Mertzanis A, Papadopoulos A, Pantera A (2011) The erosion: landslides phenomena along the National Road Lamia–Karpenisi (Greece). In: Proceedings of the 3rd international CEMEPE and SECOTOX conference Skiathos. ISBN 978-960-6865-43-5

  • Mikoš M, Majes B (2010) Mitigation of large landslides and debris flows in Slovenia, Europe. In: Werner ED, Friedman HP (eds) Landslides: Causes Types and Effects, 1st edn. Nova Science Publishers, Newyork, pp 105–131

  • Mishra AK, Deep S, Choudhary A (2015) Identification of suitable sites for organic farming using AHP and GIS. Egypt J Remote Sens Space Sci. doi:10.1016/j.ejrs.2015.06.005

    Google Scholar 

  • Mitchell A (2005) The ESRI guide to GIS analysis, vol 2. ESRI Press, Redlands

    Google Scholar 

  • Moosavi V, Talebi A, Shirmohammadi B (2014) Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology 204:646–656

    Article  Google Scholar 

  • Myronidis D, Papageorgiou C, Theophanous S (2016) Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP). Nat Hazards 81:245–263. doi:10.1007/s11069-015-2075-1

    Article  Google Scholar 

  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. doi:10.1007/s10346-006-0036-1

    Article  Google Scholar 

  • Newmark NM (1965) Effects of earthquake on dams and embankments. Géotechnique 15(2):139–160

    Article  Google Scholar 

  • Othman AN, Mohd Wan, Naim WM, Noraini S (2012) GIS based multi-criteria decision making for landslide hazard zonation. Procedia Soc Behav Sci 35:595–602

    Article  Google Scholar 

  • Öztürk S, Yusuf B, Hakan Ç, Koravos GCh, Tsapanos TM (2008) A quantitative appraisal of earthquake hazard parameters computed from Gumbel I method for different regions in and around Turkey. Nat hazards 47(3):471–495

    Article  Google Scholar 

  • Papadopoulos G (1993) The 20 March 1992 South Aegean, Greece, earthquake (Ms = 5.3): possible anomalous effects. Terra Nova 5:399–404

    Article  Google Scholar 

  • Papadopoulou-Vrynioti K, Bathrellos G, Skilodimou H, Kaviris G, Makropoulos K (2013) Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Eng Geol 158:77–88

    Article  Google Scholar 

  • Papanikolaou D, Diakakis M (2011) Changes in intensity and the distribution of natural disaster credits. Committee on Climate Change Impact Study, Bank of Greece

  • Papanikolaou D, Bargathi H, Dabovski C, Dimitriu R, El-Hawat A, Ioane D, Kranis H, Obeidi A, Oaie G, Seghedi A, Zagorchev I (2004) Transect VII: east European Craton–Scythian Platform–Dobrogea–Balkanides–Rhodope Massif–Hellenides–East Mediterranean–Cyrenaica in The Transmed Atlas

  • Papanikolaou ID, Papanikolaou DI, Lekkas EL (2009) Advances and limitations of the Environmental Seismic Intensity scale (ESI 2007) regarding near-field and far-field effects from recent earthquakes in Greece: implications for the seismic hazard assessment. Geol Soc Lond Spec Publ 316:11–30

    Article  Google Scholar 

  • Papathanassiou G, Valkaniotis S, Ganas A, Pavlides S (2013) GIS-based statistical analysis of the spatial distribution of earthquake-induced landslides in the island of Lefkada, Ionian Islands, Greece. Landslides 10(6):771–783

    Article  Google Scholar 

  • Pareek N, Sharma ML, Arora MK, Pal S (2013a) Inclusion of earthquake strong ground motion in a geographic information system-based landslide susceptibility zonation in Garhwal Himalayas. Nat Hazards 65:739–765. doi:10.1007/s11069-012-0390-3

    Article  Google Scholar 

  • Pareek N, Pal S, Sharma ML, Arora MK (2013b) Study of effect of seismic displacements on landslide susceptibility zonation (LSZ) in Garhwal Himalayan region of India using GIS and remote sensing techniques. Comput Geosci 61:50–63

    Article  Google Scholar 

  • Pavlou K, Kaviris G, Chousianitis K, Drakatos G, Kouskouna V, Makropoulos K (2013) Seismic hazard assessment in Polyphyto Dam area (NW Greece) and its relation with the “unexpected” earthquake of 13 May 1995 (Ms = 6.5, NW Greece). Nat Hazards Earth Syst Sci 13:141–149

    Article  Google Scholar 

  • Petley DN (2012) Global patterns of loss of life from landslides. Geology 40:927–930

    Article  Google Scholar 

  • Petley DN, Hearn GJ, Hart A, Rosser NJ, Dunning SA, Oven K, Mitchell WA (2007) Trends in landslide occurrence in Nepal. Nat Hazards 43:23–44. doi:10.1007/s11069-006-9100-3

    Article  Google Scholar 

  • Popescu ME (1994) A suggested method for reporting landslide causes. Bull Int As Eng Geol 5:71

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

    Article  Google Scholar 

  • Pyrgiotis L, Koukis G, Sabatakakis N (2007) Rainfall and Landslides in Karditsa county (Greece): a statistical approach. In: Proceedings of the 11th international congress, Athens

  • Radbruch-Hall DH, Colton RB, Davies WE, Lucchitta I, Skipp BA, Varnes DJ (1982) Landslide overview map of the conterminous United States. United States geological survey open-file report. pp 97–289

  • Rahman AU, Khan AN, Collins AE (2014) Analysis of landslide causes and associated damages in the Kashmir Himalayas of Pakistan. Nat Hazards 71:803–821. doi:10.1007/s11069-013-0918-1

    Article  Google Scholar 

  • Ramesh MV (2014) Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Netw 13:2–18

    Article  Google Scholar 

  • Rawat PK, Tiwari PC, Pant CC (2012) Geo-hydrological database modeling for integrated multiple hazards and risk assessment in Lesser Himalaya: a GIS-based case study. Nat Hazards 62:1233–1260. doi:10.1007/s11069-012-0144-2

    Article  Google Scholar 

  • Riedel B, Walther A (2007) InSAR processing for the recognition of landslides. Adv Geosci 14:189–194

    Article  Google Scholar 

  • Rohmer J, Foerster E (2011) Global sensitivity analysis of large-scale numerical and slide models based on Gaussian-Process meta-modeling. Comput Geosci 37:917–927

    Article  Google Scholar 

  • Rozos D, Apostolidis E (2004a) Engineering geological investigation of slope failures in Paleo Mikro Horio Evrytania Pr., aiming at its safe residential development. In: Proceedings of the 10th international congress, Thessaloniki, bulletin of the geological society of Greece 36, 2004. (in Greek)

  • Rozos D, Apostolidis E (2004b) Landslide phenomena in Canalia-Voeotia settlement and confrontation of their containment action to the residential development (in Greek). In: Proceedings of the 10th international congress, Thessaloniki, bulletin of the geological society of Greece 36

  • Rozos D, Bathrellos DG, Skilodimou DH (2010) Landslide susceptibility mapping of the northeastern part of Achaia prefecture using analytical hierarchical process and GIS techniques. In: Proceedings of the 12th international congress, Patras, bulletin of the geological society of Greece

  • Rozos D, Bathrellos GD, Skillodimou HD (2011) Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the eastern Achaia county of Peloponnesus. Greece Environ Earth Sci 63(1):49–63

    Article  Google Scholar 

  • Rozos D, Skilodimou HD, Loupasakis C, Bathrellos GD (2013) Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environ Earth Sci 70(7):3255–3266

    Article  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  Google Scholar 

  • Sabatakakis N, Koukis G, Vassiliades E, Lainas S (2013) Landslide susceptibility zonation in Greece. Nat Hazards 65(1):523–543

    Article  Google Scholar 

  • Sakkas G, Kouskouna V, Makropoulos K (2010) Seismic hazard analysis in the Ionian islands using macroseismic intensities. Hell J Geosci 45:239–247

    Google Scholar 

  • San BT (2014) An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping: the Candir catchment area (western Antalya, Turkey). Int J Appl Earth Obs Geoinform 26:399–412

    Article  Google Scholar 

  • Sassa K, Fukuoka H, Ochiai H, Wang F, Wang G (2005) Aerial prediction of earthquake and rain induced rapid and long-traveling flow phenomena (APERITIF) (M101). In: Proceedings of the first general assembly of the international consortium on landslides. pp 99–108

  • Schulz WH, Ellis WL (2007) Preliminary results of subsurface exploration and monitoring at the Johnson Creek landslide, Lincoln County, Oregon. Open-file report 2007–1127.US. Department of the Interior, USGS

  • Schulz WH, Galloway SL, Higgins JD (2012) Evidence for earthquake triggering of large landslides in coastal Oregon, USA. Geomorphology 141–142:88–98

    Article  Google Scholar 

  • Sidle RC, Ochiai H (2006) Land use and global change. Landslides: Processes, Prediction, and Land Use, American Geophysical Union, Washington, DC. doi:10.1002/9781118665954.ch6

  • Steuer RE, Na P (2003) Multiple criteria decision making combined with finance: a categorized bibliographic study. Eur J Oper Res 150(3):496–515

    Article  Google Scholar 

  • Tarantino C, Blonda P, Pasquariello G (2007) Remote sensed data for automatic detection of land-use changes due to human activity in support to landslide studies. Nat Hazards 41:245–267. doi:10.1007/s11069-006-9041-x

    Article  Google Scholar 

  • Tsangaratos P, Bernardos A (2014) Estimating landslide susceptibility through an artificial neural network classifier. Nat Hazards 74:1489–1516. doi:10.1007/s11069-014-1245-x

    Article  Google Scholar 

  • Tsangaratos P, Ilia I (2015) Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece. Landslides. doi:10.1007/s10346-015-0565-6

    Google Scholar 

  • Tsangaratos P, Ilia I, Rozos D (2013) Case event system for landslide susceptibility analysis. Landslide Sci Pract 1:585–593. doi:10.1007/978-3-642-31325-7_77

    Article  Google Scholar 

  • Tsapanos TM, Burton PW (1991) Seismic hazard evaluation for specific seismic regions of the world. Tectonophysics 194(1):153–169

    Article  Google Scholar 

  • Turner TR, Duke SD, Fransen BR, Reiter ML, Kroll AJ, Ward JW, Bach JL, Justice TE, Bilby RE (2010) Landslide densities associated with rainfall, stand age, and topography on forested landscapes, southwestern Washington, USA. Forest Ecol Manag 259:2233–2247

    Article  Google Scholar 

  • United Nations database UNdata New York, NY: United Nations Statistic Division, Other title(s): UNCDB, Columbia. http://www.columbia.edu/cgi-bin/cul/resolve?ATT2119. Accessed 20 Jan 2015

  • Urlaub M, Talling PJ, Masson DG (2013) Timing and frequency of large submarine landslides: implications for understanding triggers and future geohazard. Quat Sci Rev 72:63–82

    Article  Google Scholar 

  • Vaidya OS, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Oper Res 169:1–29

    Article  Google Scholar 

  • Van Beek LPH, Van Asch ThWJ (2004) Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling. Nat Hazards 31:289–304

    Article  Google Scholar 

  • Van Den Eeckhaut M, Hervás J (2012) State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139–140:545–558

    Article  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Gullentops F, Vandekerckhove L, Hervás J (2011) Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in southern Flanders. Quat Res 75:721–733

    Article  Google Scholar 

  • Van Den Eeckhaut M, Kerle N, Poesen J, Hervás J (2012) Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data. Geomorphology 173–174:30–42

    Article  Google Scholar 

  • Ventura G, Vilardo G, Terranova C, Sessa EB (2011) Tracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: the Montaguto landslide (Southern Italy). Remote Sens Environ 115:3237–3248

    Article  Google Scholar 

  • Vilímek V, Winter M (2014) Climate and land-use change impacts on landslides. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment, vol 1. pp 239–240. doi:10.1007/978-3-319-04999-1_31

  • Wasowski J, Dipalma Lagreca M, Lamanna C (2014) Land-use change and shallow landsliding: a case history from the apennine mountains, Italy. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment, vol 1. pp 267–272. doi:10.1007/978-3-319-04999-1_36

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72(1):1–12

    Article  Google Scholar 

  • Yosjimatsu H, Abe A (2006) A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides 3:149–158. doi:10.1007/s10346-005-0031-y

    Article  Google Scholar 

  • Zhou Y, Maumbe K, Deng J, Selin SW (2015) Resource-based destination competitiveness evaluation using a hybrid analytic hierarchy process (AHP): the case study of West Virginia. Tour Manag Perspect 15:72–80

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the three anonymous reviewers for their constructive comments and suggestions. The present study has been conducted as part of the project “Greco-Risks—Hellenic Natural-Hazards Risk-Management System of Systems” which is jointly funded by Greece and the European Union, European Regional Development Fund (ERDF), National Action “Cooperation 2011—Partnerships of Production and Research Institutions in Focused Research and Technology Sectors,” (former) Ministry of Education, Lifelong Learning and Religious Affairs, Operational Programmes “Competitiveness and Entrepreneurship” (EPAN II) and Regions in Transition, National Strategic Reference Framework NSRF 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sakkas.

Appendix

Appendix

Study

Factors/methodology

Study area

Koukis et al. (2005)

Landslide susceptibility based on lithology and landslide inventories

Greece

Ferentinou et al. (2006)

Landslide hazard estimation for earthquake- and rainfall-induced events with the use of GIS

Greece

Gournelos et al. (2010)

Correlation of landslides with precipitation with daily, monthly and annual thresholds.

Greece

Papanikolaou and Diakakis (2011)

Climate change and landslides along with probabilistic rainfall thresholds

Greece

Sabatakakis et al. (2013)

Landslide susceptibility based on multivariate criteria and landslide inventories

Greece

Chousianitis et al. (2014)

Arias intensity and Newmark displacement for earthquake-induced landslides

Greece

Chousianitis et al. (2016)

Probabilistic Newmark displacement based on probabilistic earthquake occurrence and slope strength

Greece

Anagnostopoulos and Georgiadis (1997)

Correlation of landslides with rainfalls

Northern Greece

Tsangaratos and Bernardos (2014)

Landslide susceptibility analysis through artificial neural network based on multiple parameters

NE Greece

Tsangaratos and Ilia (2015)

Landslide susceptibility analysis based on decision tree and multiple parameters

NE Greece

Tsangaratos et al. (2013)

Landslide susceptibility analysis based on case events and multiple parameters

Evoia, Greece

Ilia and Tsangaratos (2015)

Landslide susceptibility based on weight of evidence and sensitivity analysis with multiple parameters

Evoia, Greece

Rozos et al. (2013)

Soil erosion

Evoia, Greece

Kalantzi et al. (2010)

A historical investigation and recording of landslide phenomena in the area of Ioannina

Epirus, Greece

Bellas and Voulgaridis (2014)

Finite element/equilibrium methods

Epirus, Greece

Rozos and Apostolidis (2004a)

Geoengineering investigation of slope failures in Palaio Mikro Chorion

Evrytania, Greece

Lekkas and Logos (1991)

A case study of landslides at Livadi village examining multiple criteria of the area

Eastern Thessaly

Lekkas et al. (1991)

A record of landslide events in eastern Thessaly along with proposed safety measures

Eastern Thessaly

Lekkas et al. (1998a)

GIS in the use of landslides management for the case of Ropoto village

NW Thessaly (Ropoto village)

Lekkas et al. (1998b)

Analysis of the geological, tectonic, hydrogeological and slope conditions of the village Ropoto and accompanying landslide phenomena

NW Thessaly (Ropoto village)

Aggelidis Ch and Mpellas (1998)

A study for the Ropoto case. Geotechnical investigation from borehole data along with equilibrium analysis

NW Thessaly (Ropoto village)

Bathrellos et al. (2009)

Landslide susceptibility analysis based on landslide inventory and statistical and logical methods

Trikala

Kavounidis et al. (2010)

 

Tempi

Pyrgiotis et al. (2007)

A statistical analysis of precipitation and landslide occurrence for Karditsa area

Karditsa

Matziaris et al. (2007)

A stability analysis taking into account geomorphological, hydrological, geological and geotechnical conditions

Karditsa

Rozos and Apostolidis (2004b)

Investigation of landslide phenomena and safety measures taking into account the geological setting of the area of Kanalia village (Fthiotis)

Fthiotis

Mertzanis et al. (2011)

Erosion and landslide phenomena occurred in artificial slopes

Fthiotis

Georgopoulos and Vardoulakis (2000)

A model of the Malakasa landslide as a four rigid-body failure mechanism

Malakasa

Foumelis et al. (2004)

Landslide susceptibility mapping taking into account multiple criteria

Peloponnese

Koukis et al. (2009)

A correlation between landslide events and major tectonic faults in the Gulf of Corinth

Peloponnese

Kouskouna (2010)

Macroseismic investigation of destructive earthquakes. Earthquake-induced landslides are reported

Peloponnese, Ionian islands

Rozos et al. (2010)

Landslide susceptibility of northern Peloponnese using the AHP method for multiple criteria

Peloponnese

Dounias et al. (2006)

The large landslide of Tsakona

Peloponnese

Dounias and Belokas (2010)

Limit equilibrium analyses for the area of the Tsakona landslides in order to investigate the failure mechanism and examine any stabilizing measures

Peloponnese

Papadopoulos (1993)

A report of the 1992, M = 5.3 South Aegean earthquake describing landslide occurrence in the island of Milos

Cyclades (Milos)

Antoniou and Lekkas (2010)

A rockfall susceptibility analysis for Athinios port in Santorini, taking into account geological setting, geomorphology, slopes, structural analysis and rockfall travel paths

Cyclades (Thera island)

Lekkas et al. (2013)

A landslide risk reduction study for the area of Teleferik at Santorini volcanic complex

Cyclades (Thera island)

Lekkas et al. (1998c)

An overview of natural hazards (including landslides) and pointing out hazardous areas of Rhodes island

Rhodes island

Kouli et al. (2010)

Landslide susceptibility based on the weighted linear combination of multiple factors for Rethymno

Crete, Greece

Kouli et al. (2014)

Landslide susceptibility comparing weighted linear combination and weights of evidence of multiple criteria

Crete, Greece

Lekkas and Antoniou (2004)

Recording landslide phenomena in the red rock area at Zakynthos island, performing stability analysis and suggestions for protective measures

Ionian islands, Greece

Lekkas et al. (2004)

The geographical distribution of earthquake-induced landslides caused by the 2003 event at Lefkada

Ionian islands, Greece

Papathanassiou et al. (2013)

A statistical analysis of the spatial distribution of earthquake-induced landslides in the island of Lefkada taking into account multiple criteria with the use of GIS

Ionian islands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakkas, G., Misailidis, I., Sakellariou, N. et al. Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis. Nat Hazards 84, 1873–1904 (2016). https://doi.org/10.1007/s11069-016-2523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2523-6

Keywords

Navigation