Skip to main content

Advertisement

Log in

EMMPRIN Promotes the Expression of MMP-9 and Exacerbates Neurological Dysfunction in a Mouse Model of Intracerebral Hemorrhage

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Extracellular matrix metalloproteinase inducer (EMMPRIN) has been shown to be a vital inflammatory mediator in several neurological and neurodegenerative diseases. However, the role of EMMPRIN in intracerebral hemorrhage (ICH) remains unexplored. In this study, we aimed to exploit a highly selective monoclonal anti-EMMPRIN antibody to functionally inhibit EMMPRIN activity and thus that of MMPs as the downstream effector. To induce ICH pathology, adult C57BL/6 male mice were injected with collagenase type VII or saline as control into the right basal ganglia and were euthanized at different time points. The anti-EMMPRIN monoclonal antibody was intravenously injected once daily for 3 days to block the expression of EMMPRIN initiating at 4 h post-ICH. Western blot and immunofluorescence analysis results revealed that EMMPRIN expression was significantly increased surrounding the hematoma at 3 and 7 d time points after ICH when compared to the saline treated control group. EMMPRIN expression was co-localized with GFAP (astrocytes) and Iba1 (microglia) at 3 d time point post-ICH, but not in the control group mice. The co-localization of EMMPRIN with CD31 in endothelial cells occurred in both groups and was higher in the ICH brain. However, EMMPRIN expression was not detected in neurons from either group. The inhibition of EMMPRIN reduced the expression of MMP-9, the number of infiltrated neutrophils, the degree of brain injury and promoted neurological recovery after ICH. In conclusion, EMMPRIN could mediate the upregulation of MMP-9 and exacerbate neurological dysfunction in a mouse model of experimental ICH. Furthermore, blocking EMMPRIN reduced brain injury and subsequently promoted neurological recovery in ICH mice brains. These outcomes highlight that inhibition of EMMPRIN can be a potential therapeutic intervention strategy to regulate MMP-9’s pathological roles during ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF (2001) Spontaneous intracerebral hemorrhage. N Engl J Med 344:1450–1460. https://doi.org/10.1056/NEJM200105103441907

    Article  CAS  PubMed  Google Scholar 

  2. An SJ, Kim TJ, Yoon BW (2017) Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J Stroke 19:3–10. https://doi.org/10.5853/jos.2016.00864

    Article  PubMed  PubMed Central  Google Scholar 

  3. Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11:720–731

    Article  CAS  Google Scholar 

  4. Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J (2019) Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 178:101610. https://doi.org/10.1016/j.pneurobio.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  5. Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21:75–80. https://doi.org/10.1016/s0166-2236(97)01169-7

    Article  CAS  PubMed  Google Scholar 

  6. Bai Q, Sheng Z, Liu Y, Zhang R, Yong VW, Xue M (2020) Intracerebral haemorrhage: from clinical settings to animal models. Stroke Vasc Neurol 5:388–395. https://doi.org/10.1136/svn-2020-000334

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD (2019) Global brain inflammation in stroke. Lancet Neurol 18:1058–1066. https://doi.org/10.1016/S1474-4422(19)30078-X

    Article  PubMed  Google Scholar 

  8. Lattanzi S, Di Napoli M, Ricci S, Divani AA (2020) Matrix Metalloproteinases in acute intracerebral hemorrhage. Neurotherapeutics 17:484–496. https://doi.org/10.1007/s13311-020-00839-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yong HYF, Rawji KS, Ghorbani S, Xue M, Yong VW (2019) The benefits of neuroinflammation for the repair of the injured central nervous system. Cell Mol Immunol 16:540–546. https://doi.org/10.1038/s41423-019-0223-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosenberg GA, Navratil M (1997) Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology 48:921–926. https://doi.org/10.1212/wnl.48.4.921

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Tsirka SE (2005) Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain 128:1622–1633. https://doi.org/10.1093/brain/awh489

    Article  PubMed  Google Scholar 

  12. Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, Yong VW, Peeling J (2003) Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol 53:731–742. https://doi.org/10.1002/ana.10553

    Article  CAS  PubMed  Google Scholar 

  13. Tejima E, Zhao BQ, Tsuji K, Rosell A, van Leyen K, Gonzalez RG, Montaner J, Wang X, Lo EH (2007) Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab 27:460–468. https://doi.org/10.1038/sj.jcbfm.9600354

    Article  CAS  PubMed  Google Scholar 

  14. Alvarez-Sabin J, Delgado P, Abilleira S, Molina CA, Arenillas J, Ribo M, Santamarina E, Quintana M, Monasterio J, Montaner J (2004) Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage - relationship to clinical and radiological outcome. Stroke 35:1316–1322. https://doi.org/10.1161/01.Str.0000126827.69286.90

    Article  CAS  PubMed  Google Scholar 

  15. Xue M, Hollenberg MD, Yong VW (2006) Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci 26:10281–10291. https://doi.org/10.1523/JNEUROSCI.2806-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang JJ, Emanuel BA, Mack WJ, Tsivgoulis G, Alexandrov AV (2014) Matrix metalloproteinase-9: dual role and temporal profile in intracerebral hemorrhage. J Stroke Cerebrovasc Dis 23:2498–2505. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.07.005

    Article  PubMed  Google Scholar 

  17. Chaturvedi M, Kaczmarek L (2014) MMP-9 inhibition: a therapeutic strategy in ischemic stroke. Mol Neurobiol 49:563–573. https://doi.org/10.1007/s12035-013-8538-z

    Article  CAS  PubMed  Google Scholar 

  18. Guo H, Li R, Zucker S, Toole BP (2000) EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res 60:888–891

    CAS  PubMed  Google Scholar 

  19. Miyauchi T, Kanekura T, Yamaoka A, Ozawa M, Miyazawa S, Muramatsu T (1990) Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the beta-chain of major histocompatibility complex class II antigen. J Biochem 107:316–323. https://doi.org/10.1093/oxfordjournals.jbchem.a123045

    Article  CAS  PubMed  Google Scholar 

  20. Agrawal SM, Yong VW (2011) The many faces of EMMPRIN - roles in neuroinflammation. Biochem Biophys Acta 1812:213–219. https://doi.org/10.1016/j.bbadis.2010.07.018

    Article  CAS  PubMed  Google Scholar 

  21. Lee CHZ, Xue Z, Zhu YQ, Yang GY, Young WL (2007) Matrix metalloproteinase-9 inhibition attenuates vascular endothelial growth factor-induced intracerebral Hemorrhage. Stroke 38:2563–2568. https://doi.org/10.1161/Strokeaha.106.481515

    Article  CAS  PubMed  Google Scholar 

  22. Agrawal SM, Silva C, Tourtellotte WW, Yong VW (2011) EMMPRIN: a novel regulator of leukocyte transmigration into the CNS in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci 31:669–677

    Article  CAS  Google Scholar 

  23. Seizer P, Ochmann C, Schonberger T, Zach S, Rose M, Borst O, Klingel K, Kandolf R, MacDonald HR, Nowak RA, Engelhardt S, Lang F, Gawaz M, May AE (2011) Disrupting the EMMPRIN (CD147)-cyclophilin a interaction reduces infarct size and preserves systolic function after myocardial ischemia and reperfusion. Arterioscler Thromb Vasc Biol 31:1377–1386. https://doi.org/10.1161/ATVBAHA.111.225771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin R, Xiao AY, Chen R, Granger DN, Li G (2017) Inhibition of CD147 (cluster of differentiation 147) ameliorates acute ischemic stroke in mice by reducing thromboinflammation. Stroke 48:3356–3365. https://doi.org/10.1161/strokeaha.117.018839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haseneen NA, Vaday GG, Zucker S, Foda HD (2003) Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN. Am J Physiol 284:L541–L547. https://doi.org/10.1152/ajplung.00290.2002

    Article  CAS  Google Scholar 

  26. Jin R, Zhong W, Liu S, Li G (2019) CD147 as a key mediator of the spleen inflammatory response in mice after focal cerebral ischemia. J Neuroinflamm 16:198. https://doi.org/10.1186/s12974-019-1609-y

    Article  CAS  Google Scholar 

  27. Patrizz A, Doran SJ, Chauhan A, Ahnstedt H, Roy-O’Reilly M, Lai YJ, Weston G, Tarabishy S, Patel AR, Verma R, Staff I (2020) EMMPRIN/CD147 plays a detrimental role in clinical and experimental ischemic stroke. AGING. https://doi.org/10.18632/aging.102935

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M (1990) Collagenase-induced intracerebral hemorrhage in rats. Stroke 21:801–807. https://doi.org/10.1161/01.str.21.5.801

    Article  CAS  PubMed  Google Scholar 

  29. Hua Y, Schallert T, Keep RF, Wu JM, Hoff JT, Xi GH (2002) Behavioral tests after intracerebral hemorrhage in the rat. Stroke 33:2478–2484. https://doi.org/10.1161/01.Str.0000032302.91894.0f

    Article  PubMed  Google Scholar 

  30. Song EC, Chu K, Jeong SW, Jung KH, Kim SH, Kim M, Yoon BW (2003) Hyperglycemia exacerbates brain edema and perihematomal cell death after intracerebral hemorrhage. Stroke 34:2215–2220

    Article  CAS  Google Scholar 

  31. Tai SH, Chen HY, Lee EJ, Chen TY, Lin HW, Hung YC, Huang SY, Chen YH, Lee WT, Wu TS (2010) Melatonin inhibits postischemic matrix metalloproteinase-9 (MMP-9) activation via dual modulation of plasminogen/plasmin system and endogenous MMP inhibitor in mice subjected to transient focal cerebral ischemia. J Pineal Res 49:332–341. https://doi.org/10.1111/j.1600-079X.2010.00797.x

    Article  CAS  PubMed  Google Scholar 

  32. Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72:648–672. https://doi.org/10.1002/ana.23648

    Article  CAS  PubMed  Google Scholar 

  33. Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29:2189–2195. https://doi.org/10.1161/01.str.29.10.2189

    Article  CAS  PubMed  Google Scholar 

  34. Xue M, Yong VW (2020) Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol 19:1023–1032. https://doi.org/10.1016/s1474-4422(20)30364-1

    Article  CAS  PubMed  Google Scholar 

  35. Xue M, Hollenberg MD, Demchuk A, Yong VW (2009) Relative importance of proteinase-activated receptor-1 versus matrix metalloproteinases in intracerebral hemorrhage-mediated neurotoxicity in mice. Stroke 40:2199–2204. https://doi.org/10.1161/STROKEAHA.108.540393

    Article  CAS  PubMed  Google Scholar 

  36. Zhu W, Khachi S, Hao Q, Shen F, Young WL, Yang GY, Chen Y (2008) Upregulation of EMMPRIN after permanent focal cerebral ischemia. Neurochem Int 52:1086–1091. https://doi.org/10.1016/j.neuint.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  37. Seizer P, Schonberger T, Schott M, Lang MR, Langer HF, Bigalke B, Kramer BF, Borst O, Daub K, Heidenreich O, Schmidt R, Lindemann S, Herouy Y, Gawaz M, May AE (2010) EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation. Atherosclerosis 209:51–57. https://doi.org/10.1016/j.atherosclerosis.2009.08.029

    Article  CAS  PubMed  Google Scholar 

  38. Agrawal SM, Silva C, Wang J, Tong JP, Yong VW (2012) A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis. J Neuroinflamm 9:64. https://doi.org/10.1186/1742-2094-9-64

    Article  CAS  Google Scholar 

  39. Liu Y, Li Z, Khan S, Zhang R, Wei R, ZhangY Xue, Yong MVW (2021) Neuroprotection of minocycline by inhibition of extracellular matrix metalloproteinase inducer expression following intracerebral hemorrhage in mice. Neurosci Lett. https://doi.org/10.1016/j.neulet.2021.136297

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge operating grant support from the National Natural Science Foundation of China (Grant Nos: 82071331, 82001191, 81870942, and 81520108011), National Key Research and Development Program of China (Grant No: 2018YFC1312200) and Innovation Scientists and Technicians Troop Constructions Projects of Henan Province of China (for MX and QB); The Henan Medical Science and Technology Research Youth Project Co-Sponsored by the Province and Ministry in China (Grant No: SB201902020), Top Talent Fund of the Second Affiliated Hospital of Zhengzhou University (Grant No: 2020BJRCA03) for (QB); and from the Canadian Institutes of Health Sciences (VWY).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

YL and QB wrote the first manuscript; YL and QB drew the images; YL did the experiments; VWY edited the manuscript; MX supervised the project.

Corresponding authors

Correspondence to V. Wee Yong or Mengzhou Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Animals were treated in accordance with animal ethics standards throughout the animal experiment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11064_2022_3630_MOESM1_ESM.tif

Supplementary file1 Supplement Figure 1 Co-localization of MMP-9 with cellular markers at 3 d post-ICH. Representative images of the co-expression of MMP-9 with GFAP (A), Iba1 (B), and CD31(C) in mouse brain tissue sections at 3 d post-ICH. Images were acquired from the perihematoma region. Scale bar = 20 μm. (TIF 6707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Bai, Q., Yong, V.W. et al. EMMPRIN Promotes the Expression of MMP-9 and Exacerbates Neurological Dysfunction in a Mouse Model of Intracerebral Hemorrhage. Neurochem Res 47, 2383–2395 (2022). https://doi.org/10.1007/s11064-022-03630-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03630-z

Keywords

Navigation