Skip to main content

Advertisement

Log in

Calpain Inhibitors as Potential Therapeutic Modulators in Neurodegenerative Diseases

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is considered a significant challenge to understand the neuronal cell death mechanisms with a suitable cure for neurodegenerative disorders in the coming years. Calpains are one of the best-considered “cysteine proteases activated” in brain disorders. Calpain is an important marker and mediator in the pathophysiology of neurodegeneration. Calpain activation being the essential neurodegenerative factor causing apoptotic machinery activation, it is crucial to develop reliable and effective approaches to prevent calpain-mediated apoptosis in degenerating neurons. It has been recently seen that the “inhibition of calpain activation” has appeared as a possible therapeutic target for managing neurodegenerative diseases. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was conducted. The present article reviews the basic pathobiology and role of selective calpain inhibitors used in various neurodegenerative diseases as a therapeutic target.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

NDD:

Neurodegenerative diseases

NFTs:

Neurofibrillary tangles

APP:

Amyloid precursor protein

MAPK:

Mitogen activated protein kinase

CDK5:

Cyclin‐dependent kinase 5

PP2A:

Protein phosphatase 2A

GSK3β:

Glycogen synthase kinase 3β

CII:

Cerebral ischemic injury

TBI:

Traumatic brain injury

ABCA1:

ATP‐binding cassette transporter A1

SOD-1:

Superoxide dismutase 1

ALS:

Amyotrophic lateral sclerosis

PD:

Parkinson’s disease

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

HD:

Huntington’s disease

Htt:

Huntingtin gene

TBI:

Traumatic brain injury

BDPs:

Breakdown products

CMS:

Calpain-mediated spectrin

CSF:

Cerebrospinal fluid

OGD:

Oxygen–glucose deprivation

CaN:

Calcineurin

mSOD:

Superoxide dismutase

ROS:

Reactive oxygen species

TLE:

Temporal lobe epilepsy

SCI:

Spinal cord injury

IC:

Intracellular

CAST:

Calpastatin

References

  1. Ono Y, Sorimachi H (2012) Calpains—An elaborate proteolytic system. Proteins Proteom. https://doi.org/10.1016/j.bbapap.2011.08.005

    Article  Google Scholar 

  2. Funderburk SF, Marcellino BK, Yue Z (2010) Cell “self-eating” (autophagy) mechanism in Alzheimer’s disease. Mt Sinai J Med 77:59–68. https://doi.org/10.1002/msj.20161

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hanna RA, Campbell RL, Davies PL (2008) Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 456:409–412. https://doi.org/10.1038/nature07451

    Article  CAS  PubMed  Google Scholar 

  4. Guroff G (1964) A neutral, calcium-activated proteinase from the soluble fraction of rat brain. J Biol Chem 239:149–155

    Article  CAS  Google Scholar 

  5. Deshpande RV, Goust JM, Chakrabarti AK, Barbosa E, Hogan EL, Banik NL (1995) Calpain expression in lymphoid cells: increased mRNA and protein levels after cell activation. J Biol Chem 270:2497–2505. https://doi.org/10.1074/jbc.270.6.2497

    Article  CAS  PubMed  Google Scholar 

  6. Sorimachi H, Hata S, Ono Y (2010) Expanding members and roles of the calpain superfamily and their genetically modified animals. Exp Anim 59:549–566. https://doi.org/10.1538/expanim.59.549

    Article  CAS  PubMed  Google Scholar 

  7. Yang L, Sugama S, Mischak RP, Kiaei M, Bizat N, Brouillet E, Joh TH, Beal MF (2004) A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiol Dis 17:250–259. https://doi.org/10.1016/j.nbd.2004.07.021

    Article  CAS  PubMed  Google Scholar 

  8. Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R (2003) Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 278:14162–14167. https://doi.org/10.1074/jbc.M212255200

    Article  CAS  PubMed  Google Scholar 

  9. Liou AK, Zhou Z, Pei W, Lim TM, Yin XM, Chen J (2005) BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP. FASEB J 19:1350–1352. https://doi.org/10.1096/fj.04-3258fje

    Article  CAS  PubMed  Google Scholar 

  10. Araújo IM, Verdasca MJ, Leal EC, Bahr BA, Ambrósio AF, Carvalho AP, Carvalho CM (2004) Early calpain-mediated proteolysis following AMPA receptor activation compromises neuronal survival in cultured hippocampal neurons. J Neurochem 91:1322–1331. https://doi.org/10.1111/j.1471-4159.2004.02811.x

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki K, Hata S, Kawabata Y, Sorimachi H (2004) Structure, activation, and biology of calpain. Diabetes 53:S12–S18. https://doi.org/10.2337/diabetes.53.2007.s12

    Article  CAS  PubMed  Google Scholar 

  12. Pontremoli S, Viotti PL, Michetti M, Salamino F, Sparatore B, Melloni E (1992) Modulation of inhibitory efficiency of rat skeletal muscle calpastatin by phosphorylation. Biochem Biophys Res Commun 187:751–759. https://doi.org/10.1006/bbrc.1994.1376

    Article  CAS  PubMed  Google Scholar 

  13. DeMartino GN, Wachendorfer R, McGuire MJ, Croall DE (1988) Proteolysis of the protein inhibitor of calcium-dependent proteases produces lower molecular weight fragments that retain inhibitory activity. Arch Biochem Biophys 262:189–198

    Article  CAS  Google Scholar 

  14. Czogalla A, Sikorski AF (2005) Spectrin and calpain: a ‘target’and a ‘sniper’in the pathology of neuronal cells. Cell Mol Life Sci (CMLS) 62:1913–1924. https://doi.org/10.1007/s00018-005-5097-0

    Article  CAS  Google Scholar 

  15. Nixon RA (1986) Fodrin degradation by calcium-activated neutral proteinase (CANP) in retinal ganglion cell neurons and optic glia: preferential localization of CANP activities in neurons. J Neurosci 6:1264–1271. https://doi.org/10.1523/JNEUROSCI.06-05-01264.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siman R, Baudry M, Lynch G (1984) Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc Natl Acad Sci USA 81:3572–3576. https://doi.org/10.1073/pnas.81.11.3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seubert P, Baudry M, Dudek S, Lynch G (1987) Calmodulin stimulates the degradation of brain spectrin by calpain. Synapse 1:20–24. https://doi.org/10.1002/syn.890010105

    Article  CAS  PubMed  Google Scholar 

  18. Momeni HR (2011) Role of calpain in apoptosis. Cell J (Yakhteh) 13:65

    CAS  Google Scholar 

  19. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907. https://doi.org/10.1038/nrm1496

    Article  CAS  PubMed  Google Scholar 

  20. Brustovetsky T, Li T, Yang Y, Zhang JT, Antonsson B, Brustovetsky N (2010) BAX insertion, oligomerization, and outer membrane permeabilization in brain mitochondria: role of permeability transition and SH-redox regulation. Biochim Biophys Acta Bioenerg 1797:1795–1806. https://doi.org/10.1016/j.bbabio.2010.07.006

    Article  CAS  Google Scholar 

  21. Shivakumar S, Kurylowicz M, Hirmiz N, Manan Y, Friaa O, Shamas-Din A, Masoudian P, Leber B, Andrews DW, Fradin C (2014) The proapoptotic protein tBid forms both superficially bound and membrane-inserted oligomers. J Biophys 106:2085–2095. https://doi.org/10.1016/j.bpj.2014.03.049

    Article  CAS  Google Scholar 

  22. Suh DH, Kim MK, Kim HS, Chung HH, Song YS (2013) Mitochondrial permeability transition pore as a selective target for anti-cancer therapy. Front Oncol 3:41. https://doi.org/10.3389/fonc.2013.00041

    Article  PubMed  PubMed Central  Google Scholar 

  23. D’Orsi B, Kilbride SM, Chen G, Alvarez SP, Bonner HP, Pfeiffer S, Plesnila N, Engel T, Henshall DC, Düssmann H, Prehn JH (2015) Bax regulates neuronal Ca2+ homeostasis. J Neurosc 28(35):1706–1722. https://doi.org/10.1523/JNEUROSCI.2453-14.2015

    Article  CAS  Google Scholar 

  24. Faitova J, Krekac D, Hrstka R, Vojtesek B (2006) Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett 11:488–505. https://doi.org/10.2478/s11658-006-0040-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi J, Jiang Q, Ding X, Xu W, Wang DW, Chen M (2015) The ER stress-mediated mitochondrial apoptotic pathway and MAPKs modulate tachypacing-induced apoptosis in HL-1 atrial myocytes. PLoS ONE 10:e0117567. https://doi.org/10.1371/journal.pone.0117567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muruganandan S, Cribb AE (2006) Calpain-induced endoplasmic reticulum stress and cell death following cytotoxic damage to renal cells. Toxicol Sci 94:118–128. https://doi.org/10.1093/toxsci/kfl084

    Article  CAS  PubMed  Google Scholar 

  27. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta Bioenerg 1787:1342–1351. https://doi.org/10.1016//j.bbabio.2009.03.015

    Article  CAS  Google Scholar 

  28. Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J, Thompson CB (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69. https://doi.org/10.1083/jcb.200302084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Briz V, Hsu YT, Li Y, Lee E, Bi X, Baudry M (2013) Calpain-2-mediated PTEN degradation contributes to BDNF-induced stimulation of dendritic protein synthesis. J Neurosci 33:4317–4328. https://doi.org/10.1523/JNEUROSCI.4907-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaji T, Boland B, Odrljin T, Mohan P, Basavarajappa BS, Peterhoff C, Cataldo A, Rudnicki A, Amin N, Li BS, Pant HC (2004) Calpain mediates calcium-induced activation of the erk1, 2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer’s disease. Am J Pathol 165:795–805. https://doi.org/10.1016/S0002-9440(10)63342-1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Johnson GV, Guttmann RP (1997) Calpains: intact and active? BioEssays 19:1011–1018. https://doi.org/10.1002/bies.950191111

    Article  CAS  PubMed  Google Scholar 

  32. Ekinci FJ, Shea TB (1999) Free PKC catalytic subunits (PKM) phosphorylate tau via a pathway distinct from that utilized by intact PKC. Brain Res 850:207–216. https://doi.org/10.1016/S0006-8993(99)02146-0

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Briz V, Chishti A, Bi X, Baudry M (2013) Distinct roles for μ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci 33:18880–18892. https://doi.org/10.1523/JNEUROSCI.3293-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adamec E, Mohan P, Vonsattel JP, Nixon RA (2002) Calpain activation in neurodegenerative diseases: confocal immunofluorescence study with antibodies specifically recognizing the active form of calpain 2. Acta Neuropathol 104:92–104. https://doi.org/10.1007/s00401-002-0528-6

    Article  CAS  PubMed  Google Scholar 

  35. Nixon RA (2003) The calpains in aging and aging-related diseases. Ageing Res Rev 2:407–418. https://doi.org/10.1016/S1568-1637(03)00029-1

    Article  CAS  PubMed  Google Scholar 

  36. Lankiewicz S, Luetjens CM, Bui NT, Krohn AJ, Poppe M, Cole GM, Saido TC, Prehn JH (2000) Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death. J Biol Chem 275:17064–17071. https://doi.org/10.1074/jbc.275.22.17064

    Article  CAS  PubMed  Google Scholar 

  37. Sharma VK, Mehta V, Singh TG (2020) Alzheimer’s disorder: epigenetic connection and associated risk factors. Curr Neuropharmacol 18:740–753. https://doi.org/10.2174/1570159X18666200128125641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khan H, Tiwari P, Kaur A, Singh TG (2021) Sirtuin acetylation and deacetylation: a complex paradigm in neurodegenerative disease. Mol Neurobiol. https://doi.org/10.1007/s12035-021-02387-w

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zadran S, Jourdi H, Rostamiani K, Qin Q, Bi X, Baudry M (2010) Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation. J Neurosci 30:1086–1095. https://doi.org/10.1523/JNEUROSCI.5120-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lynch G, Baudry M (1984) The biochemistry of memory: a new and specific hypothesis. Science 224:1057–1063. https://doi.org/10.1126/science.614418

    Article  CAS  PubMed  Google Scholar 

  41. Lynch G, Kramar EA, Rex CS, Jia Y, Chappas D, Gall CM, Simmons DA (2007) Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. J Neurosci 27:4424–4434. https://doi.org/10.1523/JNEUROSCI.5113-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Melloni E, Michetti M, Salamino F, Minafra R, Pontremoli S (1996) Modulation of the calpain autoproteolysis by calpastatin and phospholipids. Biochem Biophys Res Commun 229:193–197. https://doi.org/10.1006/bbrc.1996.1779

    Article  CAS  PubMed  Google Scholar 

  43. Glading A, Bodnar RJ, Reynolds IJ, Shiraha H, Satish L, Potter DA, Blair HC, Wells A (2004) Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol 24:2499–2512. https://doi.org/10.1128/MCB.24.6.2499-2512.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koponen E, Lakso M, Castrén E (2004) Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. Mol Brain Res 130:81–94. https://doi.org/10.1016/j.molbrainres.2004.07.010

    Article  CAS  PubMed  Google Scholar 

  45. Thomas D, Bradshaw RA (1997) Differential utilization of ShcA tyrosine residues and functional domains in the transduction of epidermal growth factor-induced mitogen-activated protein kinase activation in 293T cells and nerve growth factor-induced neurite outgrowth in PC12 cells: identification of a new Grb2.Sos1 binding site. J Biol Chem 272:22293–22299. https://doi.org/10.1074/jbc.272.35.22293

    Article  CAS  PubMed  Google Scholar 

  46. Saido TC, Sorimachi H, Suzuki K (1994) Calpain: new perspectives in molecular diversity and physiological–pathological involvement. FASEB J 8:1814–1822. https://doi.org/10.1096/fasebj.8.11.8070630

    Article  Google Scholar 

  47. Cruz JC, Tsai LH (2004) Cdk5 deregulation in the pathogenesis of Alzheimer’s disease. Trends Mol Med 10:452–458. https://doi.org/10.1016/j.molmed.2004.07.001

    Article  CAS  PubMed  Google Scholar 

  48. Granic I, Nyakas C, Luiten PG, Eisel UL, Halmy LG, Gross G, Schoemaker H, Möller A, Nimmrich V (2010) Calpain inhibition prevents amyloid-β-induced neurodegeneration and associated behavioral dysfunction in rats. Neuropharmacology 59:334–342. https://doi.org/10.1016/j.neuropharm.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  49. Medeiros R, Kitazawa M, Chabrier MA, Cheng D, Baglietto-Vargas D, Kling A, Moeller A, Green KN, LaFerla FM (2012) Calpain inhibitor A-705253 mitigates Alzheimer’s disease-like pathology and cognitive decline in aged 3xTgAD mice. Am J Pathol 181:616–625. https://doi.org/10.1016/j.ajpath.2012.04.020

    Article  CAS  PubMed  Google Scholar 

  50. Jerónimo-Santos A, Vaz SH, Parreira S, Rapaz-Lérias S, Caetano AP, Buée-Scherrer V, Castrén E, Valente CA, Blum D, Sebastião AM, Diógenes MJ (2015) Dysregulation of TrkB receptors and BDNF function by amyloid-β peptide is mediated by calpain. Cereb Cortex 25:3107–3121. https://doi.org/10.1093/cercor/bhu105

    Article  PubMed  Google Scholar 

  51. Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK (2015) Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci 12:25. https://doi.org/10.3389/fnmol.2019.00025

    Article  CAS  Google Scholar 

  52. Querfurth H, Lee HK (2021) Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 16:1–25. https://doi.org/10.1186/s13024-021-00428-5

    Article  CAS  Google Scholar 

  53. Chen Y, Su Z, Liu F (2021) Effects of functionally diverse calpain system on immune cells. Immunol Res 23:1. https://doi.org/10.1007/s12026-021-09177-5

    Article  CAS  Google Scholar 

  54. Perera ND, Tomas D, Wanniarachchillage N, Cuic B, Luikinga SJ, Rytova V, Turner BJ (2021) Stimulation of mTOR-independent autophagy and mitophagy by rilmenidine exacerbates the phenotype of transgenic TDP-43 mice. Neurobiol Dis 154:105359. https://doi.org/10.1016/j.nbd.2021.105359

    Article  CAS  PubMed  Google Scholar 

  55. Hu D, Sun X, Magpusao A, Fedorov Y, Thompson M, Wang B, Lundberg K, Adams DJ, Qi X (2021) Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington’s disease. Nat Commun 12:1–9. https://doi.org/10.1038/s41467-021-25651-y

    Article  CAS  Google Scholar 

  56. Sarkar S (2013) Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41(5):1103–1130. https://doi.org/10.1042/BST20130134

    Article  CAS  PubMed  Google Scholar 

  57. Thapa K, Khan H, Sharma U, Grewal AK, Singh TG (2020) Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Sci. https://doi.org/10.1016/j.lfs.2020.118975

    Article  PubMed  Google Scholar 

  58. Vishwas S, Gulati M, Kapoor B, Gupta S, Singh SK, Awasthi A, Singh TG, Baishnab S, Khan A, Goyal A, Bansal A (2020) Expanding the arsenal against Huntington’s disease—herbal drugs and their nanoformulations. Curr Neuropharmacol. https://doi.org/10.2174/1570159x18666201109090824

    Article  Google Scholar 

  59. Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O, Brown SD, Rubinsztein DC (2010) Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington’s disease. Hum Mol Genet 19(11):2144–2215. https://doi.org/10.1093/hmg/ddq093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mancinelli R, Carpino G, Petrungaro S, Mammola CL, Tomaipitinca L, Filippini A, Facchiano A, Ziparo E, Giampietri C (2017) Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxid Med Cell Longev. https://doi.org/10.1155/2017/4629495

    Article  PubMed  PubMed Central  Google Scholar 

  61. Feng Y, Xia Y, Yu G, Shu X, Ge H, Zeng K, Wang J, Wang X (2013) Cleavage of GSK-3β by calpain counteracts the inhibitory effect of Ser9 phosphorylation on GSK-3β activity induced by H2O2. J Neurochem 126:234–242. https://doi.org/10.1111/jnc.12285

    Article  CAS  PubMed  Google Scholar 

  62. Hoffmeister L, Diekmann M, Brand K, Huber R (2020) GSK3: A kinase balancing promotion and resolution of inflammation. Cells 9:820

    Article  CAS  Google Scholar 

  63. Hoang MV, Nagy JA, Senger DR (2011) Cdc42-mediated inhibition of GSK-3β improves angio-architecture and lumen formation during VEGF-driven pathological angiogenesis. Microvasc Res 81:34–43. https://doi.org/10.1016/j.mvr.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  64. Sharma AK, Bhatia S, Al-Harrasi A, Nandave M, Hagar H (2020) Crosstalk between GSK-3β-actuated molecular cascades and myocardial physiology. Heart Fail Rev. https://doi.org/10.1007/s10741-020-09961-9

    Article  PubMed  Google Scholar 

  65. Potz BA, Sabe AA, Elmadhun NY, Clements RT, Abid MR, Sodha NR, Sellke FW (2017) Calpain inhibition modulates glycogen synthase kinase 3β pathways in ischemic myocardium: a proteomic and mechanistic analysis. J Thorac Cardiovasc Surg 153:342–357. https://doi.org/10.1016/j.jtcvs.2016.09.087

    Article  CAS  PubMed  Google Scholar 

  66. Nakagami Y (2016) Nrf2 is an attractive therapeutic target for retinal diseases. Oxid Med Cell Longevity. https://doi.org/10.1155/2016/7469326

    Article  Google Scholar 

  67. Nguyen HH, Volkov AN, Vandenbussche G, Tompa P, Pauwels K (2018) In vivo biotinylated calpastatin improves the affinity purification of human m-calpain. Protein Expr Purif 145:77–84. https://doi.org/10.1016/j.pep.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  68. Saadane A, Du Y, Thoreson WB, Miyagi M, Lessieur EM, Kiser J, Wen X, Berkowitz BA, Kern TS (2021) Photoreceptor cell calcium dysregulation and calpain activation promote pathogenic photoreceptor oxidative stress and inflammation in prodromal diabetic retinopathy. Am J Pathol. https://doi.org/10.1016/j.ajpath.2021.06.006

    Article  PubMed  Google Scholar 

  69. Firdous SM, Dhang P, Koley A, Khan H (2021) Diabetic retinopathy: pathogenesis and therapeutic management. In: Diabetes and diabetic complications. Nova Science Publishers, Hauppauge

  70. Sato K, Nakagawa Y, Omodaka K, Asada H, Fujii S, Masaki K, Nakazawa T (2020) The sustained release of tafluprost with a drug Delivery system prevents the axonal injury-induced loss of retinal ganglion cells in rats. Curr Eye Res 45:1114–1123. https://doi.org/10.1080/02713683.2020.1715446

    Article  CAS  PubMed  Google Scholar 

  71. Firdous SM, Ghosh S, Nath P, Khan H (2021) Molecular basis of diabetic nephropathy. In: Diabetes and diabetic complications. Nova Science Publishers, Hauppauge

  72. Tu J, Zhang X, Zhu Y, Dai Y, Li N, Yang F, Zhang Q, Brann DW, Wang R (2015) Cell-permeable peptide targeting the Nrf2–Keap1 interaction: a potential novel therapy for global cerebral ischemia. J Neurosci 35:14727–14739. https://doi.org/10.1523/JNEUROSCI.1304-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Niu F, Qian K, Qi H, Zhao Y, Jiang Y, Jia W, Sun M (2020) CPCGI reduces gray and white matter injury by upregulating Nrf2 signaling and suppressing calpain overactivation in a rat model of controlled cortical impact. Neuropsychiatr Dis Treat 16:1929. https://doi.org/10.2147/NDT.S266136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schmidlin CJ, Dodson MB, Madhavan L, Zhang DD (2019) Redox regulation by NRF2 in aging and disease. Free Radic Biol Med 134:702–707. https://doi.org/10.1016/j.freeradbiomed.2019.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Calkins MJ, Johnson DA, Townsend JA, Vargas MR, Dowell JA, Williamson TP, Kraft AD, Lee JM, Li J, Johnson JA (2009) The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal 11:497–508. https://doi.org/10.1089/ars.2008.2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT (2017) The PI3K pathway in human disease. Cell 170:605–635. https://doi.org/10.1016/j.cell.2017.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ito Y, Hart JR, Vogt PK (2018) Isoform-specific activities of the regulatory subunits of phosphatidylinositol 3-kinases–potentially novel therapeutic targets. Expert Opin Ther Targets 22(10):869–877

    Article  CAS  Google Scholar 

  78. Vasan N, Razavi P, Johnson JL, Shao H, Shah H, Antoine A, Ladewig E, Gorelick A, Lin TY, Toska E, Xu G (2019) Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science 366:714–723. https://doi.org/10.1126/science.aaw9032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Khan H, Singh A, Thapa K, Garg N, Grewal AK, Singh TG (2021) Therapeutic modulation of the phosphatidylinositol 3-kinases (PI3K) pathway in cerebral ischemic injury. Brain Res 1761:147399. https://doi.org/10.1016/j.brainres.2021.147399

    Article  CAS  Google Scholar 

  80. Beltran L, Chaussade C, Vanhaesebroeck B, Cutillas PR (2011) Calpain interacts with class IA phosphoinositide 3-kinases regulating their stability and signaling activity. Proc Natl Acad Sci USA 108(39):16217–16222. https://doi.org/10.1073/pnas.1107692108

    Article  PubMed  PubMed Central  Google Scholar 

  81. Singh S, Singh TG (2020) Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: an mechanistic approach. Curr Neuropharmacol 18:918–935. https://doi.org/10.2174/1570159X18666200207120949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Engin A, Engin AB (2021) N-Methyl-d-aspartate receptor signaling-protein kinases crosstalk in cerebral ischemia. In: Protein kinase-mediated decisions between life and death. Springer, Cham, pp 259–283. https://doi.org/10.1007/978-3-030-49844-3_10

  83. Giguere CJ, Schnellmann RG (2008) Limitations of SLLVY-AMC in calpain and proteasome measurements. Biochem Biophys Res Commun 371:578–581. https://doi.org/10.1016/j.bbrc.2008.04.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sakamoto K, Okuwaki T, Ushikubo H, Mori A, Nakahara T, Ishii K (2017) Activation inhibitors of nuclear factor kappa B protect neurons against the NMDA-induced damage in the rat retina. J Pharmacol Sci 135:72–80. https://doi.org/10.1016/j.jphs.2017.09.031

    Article  CAS  Google Scholar 

  85. De Erausquin GA, Hyrc K, Dorsey DA, Mamah D, Dokucu M, Mascó DH, Walton T, Dikranian K, Soriano M, Verdugo JM, Goldberg MP (2003) Nuclear translocation of nuclear transcription factor-κB by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors leads to transcription of p53 and cell death in dopaminergic neurons. Mol Pharmacol 63:784–790. https://doi.org/10.1124/mol.63.4.784

    Article  PubMed  Google Scholar 

  86. Andrabi SS, Parvez S, Tabassum H (2020) Ischemic stroke and mitochondria: mechanisms and targets. Protoplasma 257:335–343. https://doi.org/10.1007/s00709-019-01439-2

    Article  CAS  PubMed  Google Scholar 

  87. Traenckner EB, Wilk S, Baeuerle PA (1994) A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J 13:5433–5441

    Article  CAS  Google Scholar 

  88. Iulita MF, Cuello AC (2014) Nerve growth factor metabolic dysfunction in Alzheimer’s disease and Down syndrome. Trends Pharmacol Sci 35:338–348. https://doi.org/10.1016/j.tips.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  89. Dement A (2016) Alzheimer’s disease facts and figures. Alzheimer’s Dement J Alzheimer’s Assoc 12:459–509. https://doi.org/10.1016/j.jalz.2016.03.001

    Article  Google Scholar 

  90. Fan Y, Chen Y, Zhang S, Huang M, Wang S, Li Y, Bai J (2019) Morphine reverses the effects of 1-methyl-4-phenylpyridinium in PC12 cells through activating PI3K/Akt. Int J Neurosci 129:30–35. https://doi.org/10.1080/00207454.2018.1492575

    Article  CAS  PubMed  Google Scholar 

  91. Oveisgharan S, Wilson RS, Yu L, Schneider JA, Bennett DA (2020) Association of early-life cognitive enrichment with Alzheimer disease pathological changes and cognitive decline. JAMA Neurol 77:1217–1224. https://doi.org/10.1001//jamaneurol.2020.1941

    Article  PubMed  Google Scholar 

  92. Ballard C, Aarsland D, Cummings J, O’Brien J, Mills R, Molinuevo JL, Fladby T, Williams G, Doherty P, Corbett A, Sultana J (2020) Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol 16:661–673. https://doi.org/10.1038/s41582-020-0397-4

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wang JZ, Wang ZH, Tian Q (2014) Tau hyperphosphorylation induces apoptotic escape and triggers neurodegeneration in Alzheimer’s disease. Neurosci Bull 30:359–366. https://doi.org/10.1007/s12264-013-1415-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang M, Li J, Chakrabarty P, Bu B, Vincent I (2004) Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick Type C mice. Am J Pathol 165:843–853. https://doi.org/10.1016/s0002-9440(10)63347-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ai J, Wang H, Chu P, Shopit A, Niu M, Ahmad N, Tesfaldet T, Wang FH, Fang JN, Li X, Tang SJ (2021) The neuroprotective effects of phosphocreatine on Amyloid Beta 25–35-induced differentiated neuronal cell death through inhibition of AKT/GSK-3β/Tau/APP/CDK5 pathways in vivo and vitro. Free Radic Biol Med 162:181–190. https://doi.org/10.1016/j.freeradbiomed.2020.10.003

    Article  CAS  PubMed  Google Scholar 

  96. Sharma T, Kaur D, Grewal AK, Singh TG (2021) Therapies modulating insulin resistance in Parkinson’s disease: a cross talk. Neurosci Lett. https://doi.org/10.1016/j.neulet.2021.135754

    Article  PubMed  Google Scholar 

  97. Chami L, Checler F (2012) BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer’s disease. Mol Neurodegener 7:1–15. https://doi.org/10.1186/1750-1326-7-52

    Article  CAS  Google Scholar 

  98. Truski FF, Ghotbeddin Z, Tabandeh MR, Borujeni MP (2020) Crocin treatment after maternal hypoxia attenuates spatial memory impairment and expression of BACE1 and HIF-1α in rat offspring brain. Basic Clin Neurosci 11:499. https://doi.org/10.32598/bcn.11.4.1787.1

    Article  CAS  Google Scholar 

  99. Abe K, Takeichi M (2007) NMDA-receptor activation induces calpain-mediated β-catenin cleavages for triggering gene expression. Neuron 53:387–397. https://doi.org/10.1016/j.neuron.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  100. Abou-El-Hassan H, Sukhon F, Assaf EJ, Bahmad H, Abou-Abbass H, Jourdi H, Kobeissy FH (2017) Degradomics in neurotrauma: profiling traumatic brain injury. Neuroproteomics. https://doi.org/10.1007/978-1-4939-6952-4_4

    Article  Google Scholar 

  101. Trinchese F, Liu S, Zhang H, Hidalgo A, Schmidt SD, Yamaguchi H, Yoshii N, Mathews PM, Nixon RA, Arancio O (2008) Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. J Clin Invest 118:2796–2807. https://doi.org/10.1172/JCI34254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu M, Wang L, Gao J, Dong Q, Perry G, Ma X, Wang X (2019) Inhibition of calpain protects against tauopathy in transgenic P301S tau mice. J Alzheimers Dis 69:1077–1087. https://doi.org/10.3233/JAD-190281

    Article  CAS  PubMed  Google Scholar 

  103. Rodriguez J, Li T, Xu Y, Sun Y, Zhu C (2021) Role of apoptosis-inducing factor in perinatal hypoxic-ischemic brain injury. Neural Regen Res 16:205. https://doi.org/10.4103/1673-5374.290875

    Article  PubMed  Google Scholar 

  104. Shirasaki Y, Miyashita H, Yamaguchi M, Inoue J, Nakamura M (2005) Exploration of orally available calpain inhibitors: peptidyl α-ketoamides containing an amphiphile at P3 site. Bioorg Med Chem 13:4473–4484. https://doi.org/10.1016/j.bmc.2005.04.059

    Article  CAS  PubMed  Google Scholar 

  105. Shimazawa M, Suemori S, Inokuchi Y, Matsunaga N, Nakajima Y, Oka T, Yamamoto T, Hara H (2010) A novel calpain inhibitor,((1S)-1-((((1S)-1-Benzyl-3-cyclopropylamino-2, 3-di-oxopropyl) amino) carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), reduces murine retinal cell death in vitro and in vivo. J Pharmacol Exper Ther 332:380–387. https://doi.org/10.1124/jpet.109.156612

    Article  CAS  Google Scholar 

  106. Ryu M, Yasuda M, Shi D, Shanab AY, Watanabe R, Himori N, Omodaka K, Yokoyama Y, Takano J, Saido T, Nakazawa T (2012) Critical role of calpain in axonal damage-induced retinal ganglion cell death. J Neurosci Res 90:802–815. https://doi.org/10.1016/j.pain.2004.04.031

    Article  CAS  PubMed  Google Scholar 

  107. Shiraishi A, Murata J, Matsubara S, Nakaoka S, Kirimoto S, Osawa M, Takahashi T (2021) Muscarinic receptor M3 contributes to intestinal stem cell maintenance via EphB/ephrin-B signaling. Life Sci Alliance. https://doi.org/10.26508/lsa.202000962

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wang S, Wang S, Asgar J, Joseph J, Ro JY, Wei F, Campbell JN, Chung MK (2017) Ca2+ and calpain mediate capsaicin-induced ablation of axonal terminals expressing transient receptor potential vanilloid 1. J Biol Chem 292:8291–8303. https://doi.org/10.1074/jbc.M117.778290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Friedrich MG, Skora A, Hancock SE, Mitchell TW, Else PL, Truscott RJ (2021) Tau Is Truncated in Five Regions of the Normal Adult Human Brain. Int J Mol Sci 22:3521. https://doi.org/10.3390/ijms22073521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Donkor IO (2020) An update on the therapeutic potential of calpain inhibitors: A patent review. Expert Opin Ther Pat 30:659–675. https://doi.org/10.1080/13543776.2020.1797678

    Article  CAS  PubMed  Google Scholar 

  111. Mahaman YA, Huang F, Kessete Afewerky H, Maibouge TM, Ghose B, Wang X (2019) Involvement of calpain in the neuropathogenesis of neuropathogenesis of Alzheimer’s disease. Med Res Rev 39:608–630. https://doi.org/10.1002/med.21534

    Article  PubMed  Google Scholar 

  112. Lubisch W, Beckenbach E, Bopp S, Hofmann HP, Kartal A, Kästel C, Lindner T, Metz-Garrecht M, Reeb J, Regner F, Vierling M (2003) Benzoylalanine-derived ketoamides carrying vinylbenzyl amino residues: discovery of potent water-soluble calpain inhibitors with oral bioavailability. J Med Chem 46:2404–2412. https://doi.org/10.1021/jm0210717

    Article  CAS  PubMed  Google Scholar 

  113. Sinjoanu RC, Kleinschmidt S, Bitner RS, Brioni JD, Moeller A, Ferreira A (2008) The novel calpain inhibitor A-705253 potently inhibits oligomeric beta-amyloid-induced dynamin 1 and tau cleavage in hippocampal neurons. Neurochem Int 53:79–88. https://doi.org/10.1016/j.neuint.2008.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shu B, Zhang X, Du G, Fu Q, Huang L (2018) MicroRNA-107 prevents amyloid-β-induced neurotoxicity and memory impairment in mice. Int J Mol Med 41:1665–1672. https://doi.org/10.3892/ijmm.2017.3339

    Article  CAS  PubMed  Google Scholar 

  115. Tanqueiro SR, Ramalho RM, Rodrigues TM, Lopes LV, Sebastião AM, Diógenes MJ (2018) Inhibition of NMDA receptors prevents the loss of BDNF function induced by amyloid β. Front Pharmacol 9:237. https://doi.org/10.3389/fphar.2018.00237

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kling A, Jantos K, Mack H, Hornberger W, Drescher K, Nimmrich V, Relo A, Wicke K, Hutchins CW, Lao Y, Marsh K (2017) Discovery of novel and highly selective inhibitors of calpain for the treatment of Alzheimer’s disease: 2-(3-phenyl-1 h-pyrazol-1-yl)-nicotinamides. J Med Chem 60:7123–7138. https://doi.org/10.1021/acs.jmedchem.7b00731

    Article  CAS  PubMed  Google Scholar 

  117. Jeon KH, Lee E, Jun KY, Eom JE, Kwak SY, Na Y, Kwon Y (2016) Neuroprotective effect of synthetic chalcone derivatives as competitive dual inhibitors against μ-calpain and cathepsin B through the downregulation of tau phosphorylation and insoluble Aβ peptide formation. Eur J Med Chem 121:433–444. https://doi.org/10.1016/j.ejmech.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  118. Fa M, Zhang H, Staniszewski A, Saeed F, Shen LW, Schiefer IT, Siklos MI, Tapadar S, Litosh VA, Libien J, Petukhov PA (2016) Novel selective calpain 1 inhibitors as potential therapeutics in Alzheimer’s disease. J Alzheimers Dis 49:707–721. https://doi.org/10.3233/jad-150618

    Article  CAS  PubMed  Google Scholar 

  119. Becker B, Nazir FH, Brinkmalm G, Camporesi E, Kvartsberg H, Portelius E, Boström M, Kalm M, Höglund K, Olsson M, Zetterberg H (2018) Alzheimer-associated cerebrospinal fluid fragments of neurogranin are generated by Calpain-1 and prolyl endopeptidase. Mol Neurodegener 13:1–12. https://doi.org/10.1186/s13024-018-0279-z

    Article  CAS  Google Scholar 

  120. Poortvliet PC, O’maley K, Silburn PA, Mellick GD (2012) Premotor Parkinson’s disease: concepts and definitions. Mov Disord 27:608–616. https://doi.org/10.1002/mds.24954

    Article  CAS  Google Scholar 

  121. Espay AJ, Marsili L, Mahajan A, Sturchio A, Pathan R, Pilotto A, Elango DS, Pezous N, Masellis M, Gomez-Mancilla B (2021) Rivastigmine in Parkinson’s disease dementia with orthostatic hypotension. Ann Neurol. https://doi.org/10.1002/ana.25923

    Article  PubMed  Google Scholar 

  122. Nagai N, Fukuoka Y, Sato K, Otake H, Taga A, Oka M, Hiramatsu N, Yamamoto N (2020) The intravitreal injection of lanosterol nanoparticles rescues lens structure collapse at an early stage in Shumiya cataract rats. Int J Mol Sci 21:1048. https://doi.org/10.3390/ijms21031048

    Article  CAS  PubMed Central  Google Scholar 

  123. Cheng SY, Wang SC, Lei M, Wang Z, Xiong K (2018) Regulatory role of calpain in neuronal death. Neural Regen Res 13:556. https://doi.org/10.4103/1673-5374.228762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lu B, Guo S (2020) Mechanisms linking mitochondrial dysfunction and proteostasis failure. Trends Cell Biol 30:317–328. https://doi.org/10.1016/j.tcb.2020.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang H, Chang L, Zhang H, Nie J, Zhang Z, Yang X, Vuong AM, Wang Z, Chen A, Niu Q (2017) Calpain-2/p35-p25/Cdk5 pathway is involved in the neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicol Lett 277:41–53. https://doi.org/10.1016/j.toxlet.2017.05.027

    Article  CAS  PubMed  Google Scholar 

  126. Knaryan VH (2018) The role of calpain in spinal cord degeneration in experimental Parkinson’s disease. J Neurochem 70:75–84

    CAS  Google Scholar 

  127. Burtscher J, Di Pardo A, Maglione V, Schwarzer C, Squitieri F (2020) Mitochondrial respiration changes in R6/2 Huntington’s disease model mice during aging in a brain region specific manner. Int J Mol Sci 21:5412. https://doi.org/10.3390/ijms21155412

    Article  CAS  PubMed Central  Google Scholar 

  128. Zhang K, Yin Y, Pei C, Wu C (2021) MicroRNA-124 regulates lens epithelial cell apoptosis by affecting Fas alternative splicing by targeting PTB in age-related cataract. Clin Exp Ophthalmol. https://doi.org/10.1111/ceo.13946

    Article  PubMed  Google Scholar 

  129. Zhou H, Shi H, Li X, Zhang J, Sui X, Zhao Z, Nie Z, Wang Y, Li J, Wang L (2021) Involvement of cyclin dependent kinase 5 in M4 muscarinic acetylcholine receptor-mediated cholinergic transmission within the mouse dorsal striatum. Res Square. https://doi.org/10.21203/rs.3.rs-290339/v1

    Article  Google Scholar 

  130. Zhang X, Deng R, Zhang S, Deng J, Jia JJ, Sun B, Zhou X, Bai J (2021) Thioredoxin-1 regulates calcium homeostasis in MPP+/MPTP-induced Parkinson’s disease models. Eur J Neurosci. https://doi.org/10.1111/ejn.15355

    Article  PubMed  PubMed Central  Google Scholar 

  131. Shams R, Banik NL, Haque A (2019) Calpain in the cleavage of alpha-synuclein and the pathogenesis of Parkinson’s disease. Prog Mol Biol Transl Sci 167:107–124. https://doi.org/10.1016/bs.pmbts.2019.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Games D, Seubert P, Rockenstein E, Patrick C, Trejo M, Ubhi K, Ettle B, Ghassemiam M, Barbour R, Schenk D, Nuber S (2013) Axonopathy in an α-Synuclein transgenic model of Lewy body disease is associated with extensive accumulation of C-terminal–truncated α-Synuclein. Am J Pathol 182:940–953. https://doi.org/10.1016/j.ajpath.2012.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hassen GW, Kesner L, Stracher A, Shulman A, Rockenstein E, Mante M, Adame A, Overk C, Rissman RA, Masliah E (2018) Effects of novel calpain inhibitors in transgenic animal model of Parkinson’s disease/dementia with Lewy bodies. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-35729-1

    Article  CAS  Google Scholar 

  134. Baudry M, Su W, Seinfeld J, Sun J, Bi X (2021) Role of calpain-1 in neurogenesis. Front Mol Biosci. https://doi.org/10.3389/fmolb.2021.685938

    Article  PubMed  PubMed Central  Google Scholar 

  135. Koyama Y, Baba A, Iwata H (1990) Characteristics of Cl-dependent l-[35 S] cysteic acid transport into rat brain synaptic membrane vesicles. Neurochem Res 15:1153–1158. https://doi.org/10.1007/BF01208574

    Article  CAS  PubMed  Google Scholar 

  136. Dugue R, Hassen GW, Shulman A, Goodman JH, Michelson H, Serrano P, Chauhan S, Ling DS (2018) Controlled cortical impact-induced neurodegeneration decreases after administration of the novel calpain-inhibitor Gabadur. Brain Res Bull 142:368–373. https://doi.org/10.1016/j.brainresbull.2018.08.016

    Article  CAS  PubMed  Google Scholar 

  137. Gu Y, Zhao Y, Qian K, Sun M (2015) Taurine attenuates hippocampal and corpus callosum damage, and enhances neurological recovery after closed head injury in rats. Neuroscience 291:331–340. https://doi.org/10.1016/j.neuroscience.2014.09.073

    Article  CAS  PubMed  Google Scholar 

  138. Sun M, Zhao Y, Gu Y, Zhang Y (2015) Protective effects of taurine against closed head injury in rats. J Neurotrauma 32:66–74. https://doi.org/10.1089/neu.2012.2432

    Article  CAS  PubMed  Google Scholar 

  139. Gupta A, Shah K, Oza MJ, Behl T (2019) Reactivation of p53 gene by MDM2 inhibitors: a novel therapy for cancer treatment. Biomed Pharmacother 109:484–492. https://doi.org/10.1016/j.biopha.2018.10.155

    Article  CAS  PubMed  Google Scholar 

  140. Sedarous M, Keramaris E, O’Hare M, Melloni E, Slack RS, Elce JS, Greer PA, Park DS (2003) Calpains mediate p53 activation and neuronal death evoked by DNA damage. J Biol Chem 278:26031–26038. https://doi.org/10.1074/jbc.M302833200

    Article  CAS  PubMed  Google Scholar 

  141. Gafni J, Ellerby LM (2002) Calpain activation in Huntington’s disease. J Neurosci 22:4842–4849. https://doi.org/10.1523/JNEUROSCI.22-12-04842.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pan L, Feigin A (2021) Huntington’s disease: New frontiers in t herapeutics. Current Neurol Neurosci Rep 21:1–9

    Article  Google Scholar 

  143. Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK, Loubser O, van Raamsdonk J, Singaraja R, Yang YZ, Gafni J (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J Neurosci 22:7862–7872. https://doi.org/10.1523/JNEUROSCI.22-18-07862.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kesavardhana S, Malireddi RS, Kanneganti TD (2020) Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol 38:567–595. https://doi.org/10.1146/annurev-immunol-073119-095439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shin BN, Kim DW, Kim IH, Park JH, Ahn JH, Kang IJ, Lee YL, Lee CH, Hwang IK, Kim YM, Ryoo S (2019) Down-regulation of cyclin-dependent kinase 5 attenuates p53-dependent apoptosis of hippocampal CA1 pyramidal neurons following transient cerebral ischemia. Sci Rep 9:1–5. https://doi.org/10.1038/s41598-019-49623-x

    Article  CAS  Google Scholar 

  146. Parodi S, Pennuto M (2013) Huntington’s disease: from disease path. In: Guillory K, Carrasco AM (eds) Huntington’s disease: symptoms, risk factors and prognosis. NOVA Publishers, Hauppauge

    Google Scholar 

  147. Milnerwood AJ, Gladding CM, Pouladi MA, Kaufman AM, Hines RM, Boyd JD, Ko RW, Vasuta OC, Graham RK, Hayden MR, Murphy TH (2010) Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 65:178–190. https://doi.org/10.1016/j.neuron.2010.01.008

    Article  CAS  PubMed  Google Scholar 

  148. Itoh K, Nakamura K, Iijima M, Sesaki H (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23:64–71. https://doi.org/10.1016/j.tcb.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  149. Bizat N, Galas MC, Jacquard C, Boyer F, Hermel JM, Schiffmann SN, Hantraye P, Blum D, Brouillet E (2005) Neuroprotective effect of zVAD against the neurotoxin 3-nitropropionic acid involves inhibition of calpain. Neuropharmacology 49:695–702. https://doi.org/10.1016/j.neuropharm.2005.04.030

    Article  CAS  PubMed  Google Scholar 

  150. Valdeolivas Rojas S, Sagredo Ezquioga O, Delgado Wallace M, Pozo García MÁ, Fernández Ruiz J (2017) Effects of a sativex-like combination of phytocannabinoids on disease progression in R6/2 mice, an experimental model of Huntington’s disease. Int J Mol Sci 18:684

    Article  Google Scholar 

  151. Sekerdag E, Solaroglu I, Gursoy-Ozdemir Y (2018) Cell death mechanisms in stroke and novel molecular and cellular treatment options. Curr Neuropharmacol. https://doi.org/10.2174/1570159X16666180302115544

    Article  PubMed  PubMed Central  Google Scholar 

  152. Weber JJ, Clemensson LE, Schiöth HB, Nguyen HP (2019) Olesoxime in neurodegenerative diseases: scrutinising a promising drug candidate. Biochem Pharmacol 168:305–318. https://doi.org/10.1016/j.bcp.2019.07.002

    Article  CAS  PubMed  Google Scholar 

  153. Li Y, Zhang Y, Han W, Hu F, Qian YE, Chen Q (2013) TRO19622 promotes myelin repair in a rat model of demyelination. Int J Neurosci 123:810–822. https://doi.org/10.3109/00207454.2013.804523

    Article  CAS  PubMed  Google Scholar 

  154. Sunyach C, Michaud M, Arnoux T, Bernard-Marissal N, Aebischer J, Latyszenok V, Gouarné C, Raoul C, Pruss RM, Bordet T, Pettmann B (2012) Olesoxime delays muscle denervation, astrogliosis, microglial activation and motoneuron death in an ALS mouse model. Neuropharmacology 62(2346):2353. https://doi.org/10.1016/j.neuropharm.2012.02.013

    Article  CAS  Google Scholar 

  155. Magalon K, Zimmer C, Cayre M, Khaldi J, Bourbon C, Robles I, Tardif G, Viola A, Pruss RM, Bordet T, Durbec P (2012) Olesoxime accelerates myelination and promotes repair in models of demyelination. Ann Neurol 71:213–226. https://doi.org/10.1002/ana.22593

    Article  CAS  PubMed  Google Scholar 

  156. Richter F, Gao F, Medvedeva V, Lee P, Bove N, Fleming SM, Michaud M, Lemesre V, Patassini S, De La Rosa K, Mulligan CK (2014) Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons. Neurobiol Dis 69:263–275. https://doi.org/10.1016/j.nbd.2014.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Watchon M, Yuan KC, Mackovski N, Svahn AJ, Cole NJ, Goldsbury C, Rinkwitz S, Becker TS, Nicholson GA, Laird AS (2017) Calpain inhibition is protective in machado–joseph disease zebrafish due to induction of autophagy. J Neurosci 37:7782–7794. https://doi.org/10.1523/JNEUROSCI.1142-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rao MV, Campbell J, Palaniappan A, Kumar A, Nixon RA (2016) Calpastatin inhibits motor neuron death and increases survival of hSOD1G93A mice. J Neurochem 137:253–265. https://doi.org/10.1111/jnc.13536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Simoes AT, Gonçalves N, Koeppen A, Déglon N, Kügler S, Duarte CB, Pereira de Almeida L (2012) Calpastatin-mediated inhibition of calpains in the mouse brain prevents mutant ataxin 3 proteolysis, nuclear localization and aggregation, relieving Machado-Joseph disease. Brain 135:2428–2439. https://doi.org/10.1093/brain/aws177

    Article  PubMed  Google Scholar 

  160. Theadom A, Mahon S, Hume P, Starkey N, Barker-Collo S, Jones K, Majdan M, Feigin VL (2020) Incidence of sports-related traumatic brain injury of all severities: a systematic review. Neuroepidemiology 54:192–199

    Article  Google Scholar 

  161. Ondek K, Lucero S, Zwienenberg M, Gurkoff G (2020) An implantable helmet for studying repeat TBI. MethodsX 7:101142. https://doi.org/10.1016/j.mex.2020.101142

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sapin V, Gaulmin R, Aubin R, Walrand S, Coste A, Abbot M (2021) Blood biomarkers of mild traumatic brain injury: state of art. Neurochirurgie. https://doi.org/10.1016/j.neuchi.2021.01.001

    Article  PubMed  Google Scholar 

  163. Shin SS, Karlsson M, Mazandi VM, Ranganathan A, Hallowell T, Delso N, Kilbaugh TJ (2020) Axonal transport dysfunction of mitochondria in traumatic brain injury: a novel therapeutic target. Exp Neurol 329:113311

    Article  CAS  Google Scholar 

  164. Khan M, Dhammu TS, Matsuda F, Annamalai B, Dhindsa TS, Singh I, Singh AK (2016) Targeting the nNOS/peroxynitrite/calpain system to confer neuroprotection and aid functional recovery in a mouse model of TBI. Brain Res 1630:159–170. https://doi.org/10.1016/j.brainres.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  165. Wang KK (2017) Calpainzymography: general methodology and protocol. In: Zymography. Humana Press, New York, pp 279–285. https://doi.org/10.1007/978-1-4939-7111-4_26

  166. Hu W, Tung YC, Zhang Y, Liu F, Iqbal K (2018) Involvement of activation of asparaginylendopeptidase in tau hyperphosphorylation in repetitive mild traumatic brain injury. J Alzheimers Dis 64:709–722. https://doi.org/10.3233/JAD-180177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tan XL, Sun M, Brady RD, Liu S, Llanos R, Cheung S, Wright DK, Casillas-Espinosa PM, Sashindranath M, O’Brien TJ, McDonald SJ (2019) Transactive response DNA-binding protein 43 abnormalities after traumatic brain injury. J Neurotrauma 36:87–99. https://doi.org/10.1089/neu.2017.5491

    Article  Google Scholar 

  168. Liu R, Lonergan S, Steadham E, Zhou G, Zhang W, Huff-Lonergan E (2019) Effect of nitric oxide and calpastatin on the inhibition of µ-calpain activity, autolysis and proteolysis of myofibrillar proteins. Food Chem 275:77–84. https://doi.org/10.1016/j.foodchem.2018.09.104

    Article  CAS  PubMed  Google Scholar 

  169. Hall ED, Vaishnav RA, Mustafa AG (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7:51–61. https://doi.org/10.1016/j.nurt.2009.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hyatt HW, Powers SK (2020) The role of calpains in skeletal muscle remodeling with exercise and inactivity-induced atrophy. Int J Sports Med 41(14):994–1008. https://doi.org/10.1055/a-1199-7662

    Article  PubMed  Google Scholar 

  171. Hill RL, Singh IN, Wang JA, Hall ED (2017) Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury. Neurochem Int 111:45–56. https://doi.org/10.1016/j.neuint.2017.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kulbe JR, Singh IN, Wang JA, Cebak JE, Hall ED (2018) Continuous infusion of phenelzine, cyclosporine A, or their combination: evaluation of mitochondrial bioenergetics, oxidative damage, and cytoskeletal degradation following severe controlled cortical impact traumatic brain injury in rats. J Neurotrauma 235:1280–1293. https://doi.org/10.1089/neu.2017.5353

    Article  Google Scholar 

  173. Beitchman JA, Lifshitz J, Harris NG, Thomas TC, Lafrenaye AD, Hånell A, Dixon CE, Povlishock JT, Rowe RK (2021) Spatial distribution of neuropathology and neuroinflammation elucidate the biomechanics of fluid percussion injury. Neurotrauma Rep 2:59–75. https://doi.org/10.1089/neur.2020.0046

    Article  PubMed  PubMed Central  Google Scholar 

  174. Kant A, Medhekar NV, Bhandakkar TK (2021) Spatial calcium kinetics after a traumatic brain injury. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-021-01453-5

    Article  PubMed  Google Scholar 

  175. Ottens AK, Golden EC, Bustamante L, Hayes RL, Denslow ND, Wang KK (2008) Proteolysis of multiple myelin basic protein isoforms after neurotrauma: characterization by mass spectrometry. J Neurochem 104:1404–1414. https://doi.org/10.1111/j.1471-4159.2007.05086.x

    Article  CAS  PubMed  Google Scholar 

  176. Farkas O, Polgar B, Szekeres-Bartho J, Doczi T, Povlishock JT, Büki A (2005) Spectrin breakdown products in the cerebrospinal fluid in severe head injury—preliminary observations. Actaneurochirurgica 147:855–861. https://doi.org/10.1007/s00701-005-0559-6

    Article  CAS  Google Scholar 

  177. Pineda JA, Lewis SB, Valadka AB, Papa L, Hannay HJ, Heaton SC, Demery JA, Liu MC, Aikman JM, Akle V, Brophy GM (2007) Clinical significance of α II-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma. https://doi.org/10.1089/neu.2006.003789

    Article  PubMed  Google Scholar 

  178. Cardali S, Maugeri R (2006) Detection of [alpha] ll-spectrin and breakdown products in humans after severe traumatic brain injury. J Neurosurg Sci 50:25

    CAS  PubMed  Google Scholar 

  179. Wang Y, Liu Y, Lopez D, Lee M, Dayal S, Hurtado A, Bi X, Baudry M (2018) Protection against TBI-induced neuronal death with post-treatment with a selective calpain-2 inhibitor in mice. J Neurotrauma 35:105–117. https://doi.org/10.1089/neu.2017.5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Posmantur R, Kampfl A, Siman R, Liu SJ, Zhao X, Clifton GL, Hayes RL (1997) A calpain inhibitor attenuates cortical cytoskeletal protein loss after experimental traumatic brain injury in the rat. Neuroscience 77:875–888. https://doi.org/10.1016/j.nurt.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  181. Saatman KE, Murai H, Bartus RT, Smith DH, Hayward NJ, Perri BR, McIntosh TK (1996) Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental brain injury in the rat. PNAS 93:3428–3433. https://doi.org/10.1073/pnas.93.8.3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kupina NC, Nath R, Bernath EE, Inoue J, Mitsuyoshi A, Yuen PW, Wang KK, Hall ED (2001) The novel calpain inhibitor SJA6017 improves functional outcome after delayed administration in a mouse model of diffuse brain injury. J Neurotrauma 18:1229–1240. https://doi.org/10.1089/089771501317095269

    Article  CAS  PubMed  Google Scholar 

  183. Donkor IO (2011) Calpain inhibitors: a survey of compounds reported in the patent and scientific literature. Expert Opin Ther Pat 21:601–636. https://doi.org/10.1517/13543776.2011.568480

    Article  CAS  PubMed  Google Scholar 

  184. Buki A, Farkas O, Doczi T, Povlishock JT (2003) Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury. J Neurotrauma 20:261–268. https://doi.org/10.1089/089771503321532842

    Article  CAS  PubMed  Google Scholar 

  185. Khan H, Kashyap A, Kaur A, Singh TG (2020) Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 72:1513–1527. https://doi.org/10.1111/jphp.13336

    Article  CAS  PubMed  Google Scholar 

  186. Okada T, Suzuki H (2020) Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 6:18208. https://doi.org/10.14670/hh-18-208

    Article  CAS  Google Scholar 

  187. Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G, Veeresh P, Kotian V, Kalia K, Borah A, Wang X (2020) Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl Stroke Res 26:1–8

    Google Scholar 

  188. Fernstrom JD (2018) Monosodium glutamate in the diet does not raise brain glutamate concentrations or disrupt brain functions. Ann Nutr Metab 73:43–52. https://doi.org/10.1159/000494782

    Article  CAS  PubMed  Google Scholar 

  189. Hoque A, Williamson NA, Ameen SS, Ciccotosto GD, Hossain MI, Oakhill JS, Ng DC, Ang CS, Cheng HC (2019) Quantitative proteomic analyses of dynamic signalling events in cortical neurons undergoing excitotoxic cell death. Cell Death Dis 10:1–9. https://doi.org/10.1038/s41419-019-1445-0

    Article  CAS  Google Scholar 

  190. Karpenko MN, Tikhomirova MS (2015) The role of calpains in regulating synaptic transmission. Neurosci Behav Physiol 45:952–956

    Article  Google Scholar 

  191. Hong SC, Goto Y, Lanzino G, Soleau S, Kassell NF, Lee KS (1994) Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 25:663–669. https://doi.org/10.1161/01.STR.25.3.663

    Article  CAS  PubMed  Google Scholar 

  192. Newcomb-Fernandez JK, Zhao X, Pike BR, Wang KK, Kampfl A, Beer R, DeFord SM, Hayes RL (2001) Concurrent assessment of calpain and caspase-3 activation after oxygen–glucose deprivation in primary septo-hippocampal cultures. J Cereb Blood Flow Metab 21:1281–1294. https://doi.org/10.1097/01.WCB.0000098520.11962.37

    Article  CAS  PubMed  Google Scholar 

  193. Tao X, Chen X, Hou Z, Hao S, Liu B (2017) Protective functions of PJ34, a poly (ADP-ribose) polymerase inhibitor, are related to down-regulation of calpain and nuclear factor-κB in a mouse model of traumatic brain injury. World Neurosurg 107:888–899. https://doi.org/10.1016/j.wneu.2017.06.076

    Article  PubMed  Google Scholar 

  194. Malagelada C, Xifró X, Miñano A, Sabriá J, Rodríguez-Alvarez J (2005) Contribution of caspase-mediated apoptosis to the cell death caused by oxygen–glucose deprivation in cortical cell cultures. Neurobiol Dis 20:27–37. https://doi.org/10.1016/j.nbd.2005.01.028

    Article  CAS  PubMed  Google Scholar 

  195. Pottorf WJ, Johanns TM, Derrington SM, Strehler EE, Enyedi A, Thayer SA (2006) Glutamate-induced protease-mediated loss of plasma membrane Ca2+ pump activity in rat hippocampal neurons. J Neurochem 98:1646–1656. https://doi.org/10.1016/j.nbd.2005.01.028

    Article  CAS  PubMed  Google Scholar 

  196. Bano D, Young KW, Guerin CJ, LeFeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285. https://doi.org/10.1016/j.cell.2004.11.049

    Article  CAS  PubMed  Google Scholar 

  197. Samantaray S, Knaryan VH, Del Re AM, Woodward JJ, Shields DC, Azuma M, Inoue J, Ray SK, Banik NL (2020) Cell-permeable calpain inhibitor SJA6017 provides functional protection to spinal motoneurons exposed to MPP+. Neurotox Res 38:640–649. https://doi.org/10.1007/s12640-020-00264-3

    Article  CAS  PubMed  Google Scholar 

  198. Xu J, Zhang QG, Li C, Zhang GY (2007) Subtoxic N-methyl-d-aspartate delayed neuronal death in ischemic brain injury through TrkB receptor-and calmodulin-mediated PI-3K/Akt pathway activation. Hippocampus 17:525–537. https://doi.org/10.1007/978-3-030-49844-3_10

    Article  CAS  PubMed  Google Scholar 

  199. Rardon DP, Cefali DC, Mitchell RD, Seiler SM, Hathaway DR, Jones LR (1990) Digestion of cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles with calpain II. Effects on the Ca2+ release channel. Circ Res 67:84–96. https://doi.org/10.1161/01.RES.67.1.84

    Article  CAS  PubMed  Google Scholar 

  200. Soulsby MD, Wojcikiewicz RJ (2005) The type III inositol 1, 4, 5-trisphosphate receptor is phosphorylated by cAMP-dependent protein kinase at three sites. Biochem J 392:493–497

    Article  CAS  Google Scholar 

  201. Tremper-Wells B, Vallano ML (2005) Nuclear calpain regulates Ca2+-dependent signaling via proteolysis of nuclear Ca2+/calmodulin-dependent protein kinase type IV in cultured neurons. J Biol Chem 280:2165–2175. https://doi.org/10.1074/jbc.m410591200

    Article  CAS  PubMed  Google Scholar 

  202. Wu HY, Tomizawa K, Matsui H (2007) Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Actamedica Okayama 61:123–137. https://doi.org/10.18926/AMO/32905

    Article  CAS  Google Scholar 

  203. Suske G (1999) The Sp-family of transcription factors. Gene 238(2):291–300. https://doi.org/10.1016/s0378-1119(99)00357-1

    Article  CAS  PubMed  Google Scholar 

  204. Mao X, Moerman AM, Barger SW (2002) Neuronal κB-binding factors consist of Sp1-related proteins: functional implications for autoregulation of N-methyl-d-aspartate receptor-1 expression. J Biol Chem 277:44911–44919

    Article  CAS  Google Scholar 

  205. Zhou X (2021) Over-representation of potential SP4 target genes within Schizophrenia-risk genes. bioRxiv. https://doi.org/10.1101/2021.07.14.452377

    Article  PubMed  PubMed Central  Google Scholar 

  206. Nakamura F, Ohshima T, Goshima Y (2020) Collapsin response mediator proteins: their biological functions and pathophysiology in neuronal development and regeneration. Front Cell Neurosci 14:188. https://doi.org/10.3389/fncel.2020.00188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Liu Y, Lin D, Liu C, Zhao Y, Shen Z, Zhang K, Cao M, Li Y (2017) Cyclin-dependent kinase 5/Collapsin response mediator protein 2 pathway may mediate sevoflurane-induced dendritic development abnormalities in rat cortical neurons. Neurosci Lett 651:21–29. https://doi.org/10.1016/j.neulet.2017.04.040

    Article  CAS  PubMed  Google Scholar 

  208. Bretin S, Rogemond V, Marin P, Maus M, Torrens Y, Honnorat J, Glowinski J, Prémont J, Gauchy C (2006) Calpain product of WT-CRMP2 reduces the amount of surface NR2B NMDA receptor subunit. J Neurochem 98:1252–1265. https://doi.org/10.1111/j.1471-4159.2006.03969.x

    Article  CAS  PubMed  Google Scholar 

  209. Marlier Q, Jibassia F, Verteneuil S, Linden J, Kaldis P, Meijer L, Nguyen L, Vandenbosch R, Malgrange B (2018) Genetic and pharmacological inhibition of Cdk1 provides neuroprotection towards ischemic neuronal death. Cell Death Discov 4:1–2. https://doi.org/10.1038/s41420-018-0044-7

    Article  CAS  Google Scholar 

  210. Ko YU, Kim C, Lee J, Kim D, Kim Y, Yun N, Oh YJ (2019) Site-specific phosphorylation of Fbxw7 by Cdk5/p25 and its resulting decreased stability are linked to glutamate-induced excitotoxicity. Cell Death Discov. https://doi.org/10.1038/s41419-019-1818-4

    Article  Google Scholar 

  211. Maestre C, Delgado-Esteban M, Gomez-Sanchez JC, Bolaños JP, Almeida A (2008) Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J 27:2736–2745. https://doi.org/10.1038/emboj.2008.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Gutiérrez-Vargas JA, Múnera A, Cardona-Gómez GP (2015) CDK5 knockdown prevents hippocampal degeneration and cognitive dysfunction produced by cerebral ischemia. J Cereb Blood Flow Metab 35:1937–1949. https://doi.org/10.1038/jcbfm.2015.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Bartus RT, Hayward NJ, Elliott PJ, Sawyer SD, Baker KL, Dean RL, Akiyama A, Straub JA, Harbeson SL, Li Z (1994) Calpain inhibitor AK295 protects neurons from focal brain ischemia. Effects of postocclusion intra-arterial administration. Stroke 25:2265–2270. https://doi.org/10.1161/01.str.25.11.2265

    Article  CAS  PubMed  Google Scholar 

  214. Thapa K, Khan H, Singh TG, Kaur A (2021) Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci. https://doi.org/10.1007/s12031-021-01841-7

    Article  PubMed  Google Scholar 

  215. Zhou YD, Cai L (2019) Calpeptin reduces neurobehavioral deficits and neuronal apoptosis following subarachnoid hemorrhage in rats. J Stroke Cerebrovasc Dis 28:125–132. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.09.026

    Article  PubMed  Google Scholar 

  216. Tsubokawa T, Solaroglu I, Yatsushige H, Cahill J, Yata K, Zhang JH (2006) Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke 37:1888–1894. https://doi.org/10.1161/01.str.0000227259.15506.24

    Article  CAS  PubMed  Google Scholar 

  217. Koumura A, Nonaka Y, Hyakkoku K, Oka T, Shimazawa M, Hozumi I, Inuzuka T, Hara H (2008) A novel calpain inhibitor,((1S)-1 ((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl) amino) carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester, protects neuronal cells from cerebral ischemia-induced damage in mice. Neuroscience 157:309–318. https://doi.org/10.1007/s12576-012-0243-6

    Article  CAS  PubMed  Google Scholar 

  218. Sugiyama K, Tanaka K (2018) Spinal cord-specific deletion of the glutamate transporter GLT1 causes motor neuron death in mice. Biochem Biophys Res Commun 497:689–693. https://doi.org/10.1016/j.bbrc.2018.02.132

    Article  CAS  PubMed  Google Scholar 

  219. Ng KeeKwong KC, Harbham PK, Selvaraj BT, Gregory JM, Pal S, Hardingham GE, Chandran S, Mehta AR (2021) 40 years of CSF toxicity studies in ALS: what have we learnt about ALS pathophysiology? Front Mol Neurosci 14:37. https://doi.org/10.3389/fnmol.2021.647895

    Article  CAS  Google Scholar 

  220. Palomo GM, Granatiero V, Kawamata H, Konrad C, Kim M, Arreguin AJ, Zhao D, Milner TA, Manfredi G (2018) Parkin is a disease modifier in the mutant SOD 1 mouse model of ALS. EMBO Mol 10:e8888

    Google Scholar 

  221. Beers DR, Ho BK, Siklós L, Alexianu ME, Mosier DR, Mohamed AH, Otsuka Y, Kozovska ME, McAlhany RE, Smith RG, Appel SH (2001) Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis. J Neurochem 79:499–509. https://doi.org/10.1046/j.1471-4159.2001.00582.x

    Article  CAS  PubMed  Google Scholar 

  222. Malik MN, Sheikh AM, Fenko MD, Wisniewski HM (1986) Purification and degradation of purified neurofilament proteins by the brain calcium-activated neutral proteases. Life Sci 39:1335–1343. https://doi.org/10.1007/0-306-46847-6_5

    Article  CAS  PubMed  Google Scholar 

  223. Pant HC (1988) Dephosphorylation of neurofilament proteins enhances their susceptibility to degradation by calpain. Biochem J 256:665–668. https://doi.org/10.1042/bj2560665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Singh A (2017) Extent of impaired axoplasmic transport and neurofilament compaction in traumatically injured axon at various strains and strain rates. Brain Inj 31:1387–1395. https://doi.org/10.1080/02699052.2017.1321781

    Article  PubMed  Google Scholar 

  225. Bajaj NP, Al-Sarraj ST, Leigh PN, Anderson V, Miller CC (1999) Cyclin dependent kinase-5 (CDK-5) phosphorylates neurofilament heavy (NF-H) chain to generate epitopes for antibodies that label neurofilament accumulations in amyotrophic lateral sclerosis (ALS) and is present in affected motor neurones in ALS. Prog Neuropsychopharmacol Biol Psychiatry 23:833–850. https://doi.org/10.1016/s0278-5846(99)00044-5

    Article  CAS  PubMed  Google Scholar 

  226. Bk B, Skuntz S, Prochazkova M, Kesavapany S, Amin ND, Shukla V, Grant P, Kulkarni AB, Pant HC (2019) Overexpression of the Cdk5 inhibitory peptide in motor neurons rescue of amyotrophic lateral sclerosis phenotype in a mouse model. Hum Mol Genet 28:3175–3187. https://doi.org/10.1093/hmg/ddz118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Wootz H, Hansson I, Korhonen L, Lindholm D (2006) XIAP decreases caspase-12 cleavage and calpain activity in spinal cord of ALS transgenic mice. Exp Cell Res 312:1890–1898. https://doi.org/10.1016/j.yexcr.2006.02.021

    Article  CAS  PubMed  Google Scholar 

  228. Lu TT, Wan C, Yang W, Cai Z (2019) Role of Cdk5 in amyloid-beta pathology of lzheimer’s disease. Curr Alzheimer Res 16:1206–1215. https://doi.org/10.2174/1567205016666191210094435

    Article  CAS  PubMed  Google Scholar 

  229. Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC (2004) Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta (BBA) Proteins Proteomics 1697:143–153. https://doi.org/10.1016/j.bbapap.2003.11.020

    Article  CAS  Google Scholar 

  230. Tsai LH, Lee MS, Cruz J (2004) Cdk5, a therapeutic target for Alzheimer’s disease? Biochim Biophys Acta (BBA) Proteins Proteomics 1697:137–142. https://doi.org/10.1016/j.bbapap.2003.11.019

    Article  CAS  Google Scholar 

  231. Khan H, Gupta A, Singh TG, Kaur A (2021) Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury. Pharmacol Rep 5:1–5. https://doi.org/10.1007/s43440-021-00258-8

    Article  CAS  Google Scholar 

  232. McCollum AT, Nasr P, Estus S (2002) Calpain activates caspase-3 during UV-induced neuronal death but only calpain is necessary for death. J Neurochem 82:1208–1220. https://doi.org/10.1046/j.1471-4159.2002.01057.x

    Article  CAS  PubMed  Google Scholar 

  233. Fujikawa DG, Zhao S, Ke X, Shinmei SS, Allen SG (2010) Mild as well as severe insults produce necrotic, not apoptotic, cells: evidence from 60-min seizures. Neurosci Lett 469:333–337

    Article  CAS  Google Scholar 

  234. Vega-García A, Orozco-Suárez S, Villa A, Rocha L, Feria-Romero I, Vanegas MA (2021) Guevara-Guzmán R (2021) Cortical expression of IL1-β, Bcl-2, Caspase-3 and 9, SEMA-3a, NT-3 and P-glycoprotein as biological markers of intrinsic severity in drug-resistant temporal lobe epilepsy. Brain Res 1758:147303. https://doi.org/10.1016/j.brainres.2021.147303

    Article  CAS  PubMed  Google Scholar 

  235. Dixit AB, Srivastava A, Sharma D, Tripathi M, Paul D, Lalwani S, Doddamani R, Sharma MC, Banerjee J, Chandra PS (2020) Integrated genome-wide DNA methylation and RNAseq analysis of hippocampal specimens identifies potential candidate genes and aberrant signalling pathways in patients with hippocampal sclerosis. Neurol India 68:307. https://doi.org/10.4103/0028-3886.280649

    Article  PubMed  Google Scholar 

  236. Vosler PS, Brennan CS, Chen J (2008) Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurol 38:78–100. https://doi.org/10.1007/s12035-008-8036-x

    Article  CAS  Google Scholar 

  237. Sekyi MT, Lauderdale K, Atkinson KC, Golestany B, Karim H, Feri M, Soto JS, Diaz C, Kim SH, Cilluffo M, Nusinowitz S (2021) Alleviation of extensive visual pathway dysfunction by a remyelinating drug in a chronic mouse model of multiple sclerosis. Brain Pathol 31:312–332. https://doi.org/10.1111/bpa.12930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Nicholson AM, Ferreira A (2009) Increased membrane cholesterol might render mature hippocampal neurons more susceptible to β-amyloid-induced calpain activation and tau toxicity. J Neurosci 29:4640–4651. https://doi.org/10.1523/JNEUROSCI.0862-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Lam PM, González MI (2019) Calpain activation and neuronal death during early epileptogenesis. Neurobiol Dis 124:141–151. https://doi.org/10.1016/j.nbd.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  240. Araújo IM, Gil JM, Carreira BP, Mohapel P, Petersen Å, Pinheiro PS, Soulet D, Bahr BA, Brundin P, Carvalho CM (2008) Calpain activation is involved in early caspase-independent neurodegeneration in the hippocampus following status epilepticus. J Neurochem 105:666–676. https://doi.org/10.1111/j.1471-4159.2007.05181.x

    Article  CAS  PubMed  Google Scholar 

  241. Tian FF, Zeng C, Guo TH, Chen Y, Chen JM, Ma YF, Fang J, Cai XF, Li FR, Wang XH, Huang WJ (2009) Mossy fiber sprouting, hippocampal damage and spontaneous recurrent seizures in pentylenetetrazole kindling rat model. Acta Neurol Belg 109:298–304

    PubMed  Google Scholar 

  242. Wan L, Ren L, Chen L, Wang G, Liu X, Wang BH, Wang Y (2018) M-Calpain activation facilitates seizure induced KCC2 down regulation. Front Mol Neurosci 11:287. https://doi.org/10.3389/fnmol.2018.00287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Li W, Yu J, Liu Y, Huang X, Abumaria N, Zhu Y, Huang X, Xiong W, Ren C, Liu XG, Chui D (2013) Elevation of brain magnesium prevents and reverses cognitive deficits and synaptic loss in Alzheimer’s disease mouse model. Mol Brain. https://doi.org/10.1186/s13041-014-0065-y

    Article  PubMed  PubMed Central  Google Scholar 

  244. Lam PM, Carlsen J, González MI (2017) A calpain inhibitor ameliorates seizure burden in an experimental model of temporal lobe epilepsy. Neurobiol Dis 102:1–10. https://doi.org/10.1016/s0304-3940(98)00266-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282. https://doi.org/10.3389/fneur.2019.00282

    Article  PubMed  PubMed Central  Google Scholar 

  246. Sribnick EA, Matzelle DD, Banik NL, Ray SK (2007) Direct evidence for calpain involvement in apoptotic death of neurons in spinal cord injury in rats and neuroprotection with calpain inhibitor. Neurochem Res 32:2210–2216. https://doi.org/10.1007/s11064-007-9433-7

    Article  CAS  PubMed  Google Scholar 

  247. Siman R, Cui H, Wewerka SS, Hamel L, Smith DH, Zwank MD (2020) Serum SNTF, a surrogate marker of axonal injury, is prognostic for lasting brain dysfunction in mild TBI treated in the emergency department. Front Neurol 11:249. https://doi.org/10.3389/fneur.2020.00249

    Article  PubMed  PubMed Central  Google Scholar 

  248. Guo J, Lao Y, Chang DC (2009) Calcium and apoptosis. In: Handbook of neurochemistry and molecular neurobiology. Springer, New York, pp 597–622. https://doi.org/10.1007/978-0-387-30370-3_33

  249. Abbaszadeh F, Fakhri S, Khan H (2020) Targeting apoptosis and autophagy following spinal cord injury: therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res. https://doi.org/10.1016/j.phrs.2020.105069

    Article  PubMed  Google Scholar 

  250. Rami A, Agarwal R, Botez G, Winckler J (2000) μ-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res 866:299–312. https://doi.org/10.1016/s0006-8993(00)02301-5

    Article  CAS  PubMed  Google Scholar 

  251. Ma M (2013) Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. Neurobiol Dis 60:61–79. https://doi.org/10.1016/j.nbd.2013.08.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India for providing the necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Conceived and designed the experiments: TGS. Analyzed the data: HK, KT, NG wrote the manuscript: HK, NG. Editing of the manuscript: AK. Critically reviewed the article: TGS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Garg, N., Singh, T.G. et al. Calpain Inhibitors as Potential Therapeutic Modulators in Neurodegenerative Diseases. Neurochem Res 47, 1125–1149 (2022). https://doi.org/10.1007/s11064-021-03521-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03521-9

Keywords

Navigation