Skip to main content

Advertisement

Log in

Cell-Permeable Calpain Inhibitor SJA6017 Provides Functional Protection to Spinal Motoneurons Exposed to MPP+

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Extra-nigral central nervous system sites have been found to be affected in Parkinson’s disease (PD). In addition to substantia nigra, degeneration of spinal cord motor neurons may play a role in the motor symptoms of PD. To this end, hybrid rodent VSC 4.1 cells differentiated into motoneurons were used as a cell culture model following exposure to Parkinsonian neurotoxicant MPP+. SJA6017, a cell-permeable calpain inhibitor, was tested for its neuroprotective efficacy against the neurotoxicant. SJA6017 attenuated MPP+-induced rise in intracellular free Ca2+ and concomitant increases in the active form of calpain. It also significantly prevented increased levels of proteases and their activities, as shown by reduced levels of 145 kDa calpain-specific and 120 kDa caspase-3-specific spectrin breakdown products. Exposure to MPP+ elevated the levels of reactive oxygen species in VSC 4.1 motoneurons; this was significantly diminished with SJA6017. The motor proteins in spinal motoneurons, i.e., dynein and kinesin, were also impaired following exposure to MPP+ through calpain-mediated mechanisms; this process was partially ameliorated by SJA6017 pretreatment. Cytoprotection provided by SJA6017 against MPP+-induced damage to VSC 4.1 motoneurons was confirmed by restoration of membrane potential via whole-cell patch-clamp assay. This study demonstrates that calpain inhibition is a prospective route for neuroprotection in experimental PD; moreover, calpain inhibitor SJA6017 appears to be an effective neuroprotective agent against MPP+-induced damage in spinal motoneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

dVSC 4.1:

Differentiated ventral spinal cord cells

MTT:

3-(4, 5-Dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide

IR:

Immunoreactivity

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SBDP:

Spectrin breakdown products

SC:

Spinal cord

References

  • Akdemir O, Uçankale M, Karaoğlan A, Barut S, Sağmanligil A, Bilguvar K, Cirakoğlu B, Sahan E, Colak A (2008) Therapeutic efficacy of SJA6017, a calpain inhibitor, in rat spinal cord injury. J Clin Neurosci 15:1130–1136

    CAS  PubMed  Google Scholar 

  • Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291:1159–1171

    Google Scholar 

  • Azuma M, Shearer TR (2008) The role of calcium-activated protease calpain in experimental retinal pathology. Surv Ophthalmol 53:150–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee R, Starkov AA, Beal MF, Thomas B (2009) Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim Biophys Acta 1792:651–663

    CAS  PubMed  Google Scholar 

  • Banik NL, Hogan EL, Jenkins MG, McDonald JK, McAlhaney WW, Sostek MB (1983) Purification of a calcium-activated neutral proteinase from bovine brain. Neurochem Res 8:1389–1405

    CAS  PubMed  Google Scholar 

  • Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285

    CAS  PubMed  Google Scholar 

  • Bevers MB, Neumar RW (2008) Mechanistic role of calpains in postischemic neurodegeneration. J Cereb Blood Flow Metab 28:655–673

    CAS  PubMed  Google Scholar 

  • Beyer RE (1992) An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem Cell Biol 70:390–403

    CAS  PubMed  Google Scholar 

  • Biswas S, Harris F, Singh J, Phoenix DA (2004) The in vitro retardation of porcine cataractogenesis by the calpain inhibitor, SJA6017. Mol Cell Biochem 261:169–173

    CAS  PubMed  Google Scholar 

  • Butler JT, Samantaray S, Beeson CC, Ray SK, Banik NL (2009) Involvement of calpain in the process of Jurkat T cell chemotaxis. J Neurosci Res 87:626–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Callizot N, Combes M, Henrigues A, Poindron P (2019) Necrosis, apoptosis, necroptosis, three modes of action of dopaminergic neuron neurotoxins. PLoS One 14:e0215277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH (2012) Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 135:2058–2073

    PubMed  PubMed Central  Google Scholar 

  • Cleeter MWJ, Cooper JM, Schapira AHV (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem 58:786–789

    CAS  PubMed  Google Scholar 

  • Crawford GD, Le WD, Smith RG, Xie WJ, Stefani E, Appel SH (1992) A novel N18TG2 x mesencephalon cell hybrid expresses properties that suggest a dopaminergic cell line of substantia nigra origin. J Neurosci 12:3392–3398

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeJongh KS, Colvin AA, Wang KK, Catterall WA (1994) Differential proteolysis of the full-length form of the L-type calcium channel alpha 1 subunit by calpain. J Neurochem 63:1558–1564

    CAS  Google Scholar 

  • Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci 106:13010–13015

    CAS  PubMed  Google Scholar 

  • Dufty BM, Warner LR, Hou ST, Jiang SX, Gomez-Isla T, Leenhouts KM, Oxford JT, Feany MB, Masliah E, Rohn TT (2007) Calpain-cleavage of alpha-synuclein: connecting proteolytic processing to disease-linked aggregation. Am J Pathol 170:1725–1738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Hof PR, Glezer IL, Conde F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Cem Neuroanat 16:77–116

    CAS  Google Scholar 

  • Inoue J, Nakamura M, Cui YS, Sakai Y, Sakai O, Hill JR, Wang KK, Yuen PW (2003) Structure-activity relationship study and drug profile of N-(4-fluorophenylsulfonyl)-L-valyl-L-leucinal (SJA6017) as a potent calpain inhibitor. J Med Chem 46:868–871

    CAS  PubMed  Google Scholar 

  • Inserte J, Garcia-Dorado D, Hernando V, Soler-Soler J (2005) Calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ Res 97:465–473

    CAS  PubMed  Google Scholar 

  • Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T, Chakraborti S (2010) Mitochondrial calpain system: an overview. Arch Biochem Biophys 495:1–7

    CAS  PubMed  Google Scholar 

  • Kass GE, Wright JM, Nicotera P, Orrenius S (1988) The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity: role of intracellular calcium. Arch Biochem Biophys 260:789–797

    CAS  PubMed  Google Scholar 

  • Kopil CM, Siebert AP, Foskett JK, Neumar RW (2012) Calpain-cleaved type 1 inositol 1,4,5-trisphosphate receptor impairs ER Ca(2+) buffering and causes neurodegeneration in primary cortical neurons. J Neurochem 123:147–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Choonara YE, Pillay V (2014) In silico affinity profiling of neuroactive polyphenols for post-traumatic calpain inactivation: a molecular docking and atomistic simulation sensitivity analysis. Molecules 20:135–168

    PubMed  PubMed Central  Google Scholar 

  • Kupina NC, Nath R, Bernath EE, Inoue J, Mitsuyoshi A, Yuen PW, Wang KK, Hall ED (2001) The novel calpain inhibitor SJA6017 improves functional outcome after delayed administration in a mouse model of diffuse brain injury. J Neurotrauma 18:1229–1240

    CAS  PubMed  Google Scholar 

  • Levesque S, Wilson B, Gregoria V, Thorpe LB, Dallas S, Polikov VS, Hong JS, Block ML (2010) Reactive microgliosis: extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. Brain 133:808–821

    PubMed  PubMed Central  Google Scholar 

  • Mandavilli BS, Ali SF, Van Houten B (2000) DNA damage in brain mitochondria caused by aging and MPTP treatment. Brain Res 885:45–52

    CAS  PubMed  Google Scholar 

  • Mizuno Y, Sone N, Saitoh T (1987) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J Neurochem 48:1787–1793

    CAS  PubMed  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    CAS  PubMed  Google Scholar 

  • Nicholls DG, Vesce S, Kirk L, Chalmers S (2003) Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells. Cell Calcium 34:407–424

    CAS  PubMed  Google Scholar 

  • Nicklas WJ, Youngster SK, Kindt MV, Heikkila RE (1987) MPTP, MPP+ and mitochondrial function. Life Sci 40:721–729

    CAS  PubMed  Google Scholar 

  • Ozaki T, Tomita H, Tamai M, Ishiguro S (2007) Characteristics of mitochondrial calpains. J Biochem 142:365–376

    CAS  PubMed  Google Scholar 

  • Parker WD Jr, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218

    CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Djaldetti R et al (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–142

    CAS  PubMed  Google Scholar 

  • Samantaray S, Knaryan VH, Le Gal C, Ray SK, Banik NL (2011) Calpain inhibition protected spinal cord motoneurons against 1-methyl-4-phenylpyridinium ion and rotenone. Neuroscience 192:263–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samantaray S, Knaryan VH, Shields DC, Cox AA, Haque A, Banik NL (2015) Inhibition of Calpain activation protects MPTP-induced nigral and spinal cord neurodegeneration, reduces inflammation, and improves gait dynamics in mice. Mol Neurobiol 52:1054–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    CAS  PubMed  Google Scholar 

  • Sherer TB, Betarbet R, Greenamyre JT (2002) Environment, mitochondria, and Parkinson’s disease. Neuroscientist 8:192–197

    CAS  PubMed  Google Scholar 

  • Smith MA, Schnellmann RG (2012) Calpains, mitochondria, and apoptosis. Cardiovasc Res 96:32–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PD, Mount MP, Shree R, Callaghan S, Slack RS, Anisman H, Vincent I, Wang X, Mao Z, Park DS (2006) Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J Neurosci 26:440–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeshige K, Minakami S (1979) NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem J 180:129–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner CM (2003) Is the cause of Parkinson’s disease environmental or hereditary? Evidence from twin studies. Adv Neurol 91:133–142

    PubMed  Google Scholar 

  • Vosler PS, Brennan CS, Chen J (2008) Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 38:78–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warner TT, Schapira AH (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 53:S16–S23

    CAS  PubMed  Google Scholar 

  • Warren MW, Zheng W, Kobeissy FH, Cheng Liu M, Hayes RL, Gold MS, Larner SF, Wang KK (2007) Calpain- and caspase-mediated alphaII-spectrin and tau proteolysis in rat cerebrocortical neuronal cultures after ecstasy or methamphetamine exposure. Int J Neuropsychopharmacol 10:479–489

    CAS  PubMed  Google Scholar 

  • Zhao H, Xu M, Chu G (2017) Association between myocardial cell apoptosis and calpain-1/caspase-3 expression in rats with hypoxic-ischemic brain damage. Mol Med Rep 15:2727–2731

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The hybrid cell line VSC 4.1 was a gift from Dr. Stanley H. Appel (Houston, TX, USA).

Code Availability

Not applicable.

Funding

This work was supported in part by NIH-NINDS (R01NS062327-01A2), Veterans Administration (1I01BX004269-01), and the South Carolina State Spinal Cord Research Fund (SCIRF-2015P-01, SCIRF-2015P-04, SCIRF-2015-I-01, SCIRF-2016 I-03, and SCIRF #2018 I-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naren L. Banik.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

No human or animal subjects were included in this study.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samantaray, S., Knaryan, V.H., M. Del Re, A. et al. Cell-Permeable Calpain Inhibitor SJA6017 Provides Functional Protection to Spinal Motoneurons Exposed to MPP+. Neurotox Res 38, 640–649 (2020). https://doi.org/10.1007/s12640-020-00264-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00264-3

Keywords

Navigation