Skip to main content

Advertisement

Log in

High Expression of LncRNA XIST as an Index Helping to Diagnose Parkinson’s Disease

  • Published:
Neurophysiology Aims and scope

LncRNA XIST plays roles in the development of such degenerative disorder as Parkinson’s disease (PD). We herein explored its diagnostic value. Clinical baseline data (age, sex, BMI, years of education, and PD family history) of PD patients and healthy controls, as well as the diseases course in PD patients, were recorded. The PD patients were staged using the Hoehn and Yahr grading scale. Case severity, serum XIST level, correlation between the serum XIST level and UPDRS score, and XIST diagnostic value for PD were assessed by means of UPDRS score, RT-qPCR, Pearson analysis, and plotting an operating characteristic (ROC) curve. The PD patients and healthy controls presented no significant differences in age, sex, BMI, and years of education, but there were more cases with a family history of PD in PD patients. The serum XIST expression was noticeably greater in PD patients, and a higher PD stage was linked to a higher serum XIST expression. There was a positive correlation between the serum XIST expression and UPDRS score in PD patients. Thus, the XIST expression has a noticeable diagnostic value for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Kalia and A. E. Lang, “Parkinson’s disease,” Lancet. 386, No. 9996, 896–912 (2015); doi: https://doi.org/10.1016/S0140-6736(14)61393-3.

    Article  CAS  PubMed  Google Scholar 

  2. E. Tolosa, A. Garrido, S. W. Scholz, and W. Poewe, “Challenges in the diagnosis of Parkinson’s0 disease,” Lancet Neurol., 20, No. 5, 385–397; doi: https://doi.org/10.1016/S1474-4422(21)00030-2.

  3. S. Lotankar, K. S. Prabhavalkar, and L. K. Bhatt, “Biomarkers for Parkinson’s disease: Recent advancement,” Neurosci Bull., 33, No. 5, 585–597 (2017); doi: https://doi.org/10.1007/s12264-017-0183-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. T. Hayes, “Parkinson's disease and parkinsonism,” Am. J. Med., 132, No. 7, 802–807 (2019); doi: https://doi.org/10.1016/j.amjmed.2019.03.001.

    Article  PubMed  Google Scholar 

  5. J. Hixson, J. E. Quintero, A. Guiliani, et al., “Visualization of the movement disorder society unified Parkinson’s disease rating scale results,” J. Parkinsons Dis., 13, No. 3, 421–426 (2023); doi: https://doi.org/10.3233/JPD-225071.

    Article  PubMed  PubMed Central  Google Scholar 

  6. I. A. Qureshi and M. F. Mehler, “Long non-coding RNAs: Novel targets for nervous system disease diagnosis and therapy,” Neurotherapeutics, 10, No. 4, 632–646 (2013); doi: https://doi.org/10.1007/s13311-013-0199-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L. W. Harries, “Long non-coding RNAs and human disease,” Biochem. Soc. Trans., 40, No. 4, 902–906 (2012); doi: https://doi.org/10.1042/BST20120020.

    Article  CAS  PubMed  Google Scholar 

  8. T. F. J. Kraus, M. Haider, J. Spanner, et al., “Altered long noncoding RNA expression precedes the course of Parkinson’s disease-a preliminary report,” Mol. Neurobiol., 54, No. 4, 2869–2877 (2017); doi: https://doi.org/10.1007/s12035-016-9854-x.

    Article  CAS  PubMed  Google Scholar 

  9. W. Yan, Z. Y. Chen, J. Q. Chen, and H. M. Chen, “LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein,” Biochem. Biophys. Res. Commun., 496, No. 4, 1019–1024 (2018); doi: https://doi.org/10.1016/j.bbrc.2017.12.149.

    Article  CAS  PubMed  Google Scholar 

  10. Q. Lin, S. Hou, Y. Dai, et al., “LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP,” Biol. Chem., 400, No. 9, 1217–1228 (2019); doi: https://doi.org/10.1515/hsz-2018-0431.

    Article  CAS  PubMed  Google Scholar 

  11. L. J. Cai, L. Tu, X. M. Huang, et al., “LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease,” Mol. Brain, 13, No. 1, 130 (2020); doi: https://doi.org/10.1186/s13041-020-00656-8.

  12. X. M. Ding, L. J. Zhao, H. Y. Qiao, et al., “Long noncoding RNA-p21 regulates MPP+-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells,” Chem. Biol. Interact., 307, 73–81 (2019); doi: https://doi.org/10.1016/j.cbi.2019.04.017.

    Article  CAS  PubMed  Google Scholar 

  13. G. Pintacuda, A. N. Young, and A. Cerase, “Function by structure: Spotlights on XIST long non-coding RNA,” Front. Mol. Biosci., 4, 90 (2017); doi: https://doi.org/10.3389/fmolb.2017.00090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Q. Zhou, M. M. Zhang, M. Liu, et al., “LncRNA XIST sponges miR-199a-3p to modulate the Sp1/LRRK2 signal pathway to accelerate Parkinson’s disease progression,” Aging (Albany NY), 13, No. 3, 4115–4137 (2021); doi: https://doi.org/10.18632/aging.202378.

    Article  CAS  PubMed  Google Scholar 

  15. W. R. Gibb and A. J. Lees, “The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease,” J. Neurol. Neurosurg. Psychiatry, 51, No. 6, 745–752 (1988); doi: https://doi.org/10.1136/jnnp.51.6.745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Chen, X. Lai, X. Wang, et al., “Long non-coding RNAs and circular RNAs: insights into microglia and astrocyte mediated neurological diseases,” Front. Mol. Neurosci., 14, 745066 (2021); doi: https://doi.org/10.3389/fnmol.2021.745066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. G. Sun, J. Wang, Y. Z. Shan, et al., “Identifying distinct candidate genes for early Parkinson’s disease by analysis of gene expression in whole blood,” Neuro. Endocrinol. Lett., 35, No. 5, 398–404 (2014).

    CAS  PubMed  Google Scholar 

  18. S. Yang, H. Yang, Y. Luo, et al., “Long non-coding RNAs in neurodegenerative diseases,” Neurochem. Int., 148, 105096 (2021); doi: https://doi.org/10.1016/j.neuint.2021.105096.

    Article  CAS  PubMed  Google Scholar 

  19. P. Wu, X. Zuo, H. Deng, et al., “Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases,” Brain Res Bull., 97, 69–80 (2013); doi: https://doi.org/10.1016/j.brainresbull.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  20. J. Cheng, Y. Duan, F. Zhang, et al., “The role of lncRNA TUG1 in the Parkinson disease and its effect on microglial inflammatory response,” Neuromolecular Med., 23, No. 2, 327–334 (2021); doi: https://doi.org/10.1007/s12017-020-08626-y.

    Article  CAS  PubMed  Google Scholar 

  21. M. R. Asadi, S. Abed, G. Kouchakali, et al., “Competing endogenous RNA (ceRNA) networks in Parkinson’s disease: A systematic review,” Front. Cell. Neurosci., 17, 1044634 (2023); doi: https://doi.org/10.3389/fncel.2023.1044634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Ghafouri-Fard, M. Safari, M. Taheri, and M. Samadian, “Expression of linear and circular lncRNAs in Alzheimer’s disease,” J. Mol. Neurosci., 72, No. 2, 187–200 (2022); doi: https://doi.org/10.1007/s12031-021-01900-z.

    Article  CAS  PubMed  Google Scholar 

  23. J. Bao, W. Chang, and Y. Zhao, “Diagnosis and drug prediction of Parkinson’s disease based on immunerelated genes,” J. Mol. Neurosci., 72, No. 9, 1809–1819 (2022); doi: https://doi.org/10.1007/s12031-022-02043-5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Dai.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, G., Lu, D. et al. High Expression of LncRNA XIST as an Index Helping to Diagnose Parkinson’s Disease. Neurophysiology 54, 37–42 (2022). https://doi.org/10.1007/s11062-023-09933-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-023-09933-3

Keywords

Navigation