Skip to main content

Advertisement

Log in

Diagnosis and Drug Prediction of Parkinson’s Disease Based on Immune-Related Genes

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. Immune mechanisms play an important role in the development of PD. The purpose of this study was to identify potential differentially expressed immune-related genes (IRGs), signaling pathways, and drugs in PD, which may provide new diagnostic markers and therapeutic targets for PD. Differentially expressed genes (DEGs) and IRGs were respectively obtained from the Gene Expression Omnibus (GEO) dataset and the ImmPort database. Weighted gene co-expression network analysis (WGCNA) was utilized to further identify hub IRGs. Core IRGs were obtained by intersection of DEGs and hub genes in the module of WGCNA, followed by construction of diagnostic models and regulation network establishment of long non-coding RNAs (lncRNAs)-miRNAs-diagnostic IRGs. Analysis of functional enrichment and protein–protein interaction (PPI) network and identification of related drugs of DEGs was performed. LILRB3 and CSF3R were identified as potential diagnostic markers for PD. Two regulatory pairs were identified based on LILRB3 and CSF3R, including XIST-hsa-miR-214-3p/hsa-miR-761-LILRB3 and XIST-hsa-miR-485-5p/hsa-miR-654-5p-CSF3R. LEP and IL1A were drug targets of Olanzapine. MMP9 and HSP90AB1 were drug targets of Bevacizumab. In addition, LEP and MMP9 were respectively drug targets of Lovastatin and Celecoxib. Herpes simplex infection (involved TNFRSF1A) and cytokine-cytokine receptor interaction (involved CSF3R, LEP, and IL1A) were the most remarkably enriched signaling pathways of DEGs. Identified IRGs and related signaling pathways may play critical roles in the development of PD. Additionally, LILRB3 and CSF3R can be considered as potential immune-related diagnostic markers for PD. LEP, IL1A, MMP9, and HSP90AB1 may be regarded as immune-related therapeutic targets for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. The dataset supporting the conclusions of this article is included within the article.

References

  • Agostini S, Mancuso R, Baglio F, Clerici M (2017) A protective role for herpes simplex virus type-1-specific humoral immunity in Alzheimer’s Disease. Expert Rev Anti Infect Ther 15:89–91

    Article  CAS  PubMed  Google Scholar 

  • Alves G, Wentzel-Larsen T, Aarsland D, Larsen JP (2005) Progression of motor impairment and disability in Parkinson disease: a population-based study. Neurology 65:1436–1441

    Article  PubMed  Google Scholar 

  • Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in Neurodegenerative Dis Immunol 129:154–169

    CAS  Google Scholar 

  • Anirudhan A, Prabu P, Sanyal J, Banerjee TK, Guha G, Murugesan R et al (2021) Interdependence of metals and its binding proteins in Parkinson’s disease for diagnosis. NPJ Parkinson’s Dis 7:3

    Article  CAS  Google Scholar 

  • Bai O, Chlan-Fourney J, Bowen R, Keegan D, Li XM (2003) Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res 71:127–131

    Article  CAS  PubMed  Google Scholar 

  • Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202:17–20

    Article  CAS  PubMed  Google Scholar 

  • Caggiu E, Paulus K, Arru G, Piredda R, Sechi GP, Sechi LA (2016) Humoral cross reactivity between α-synuclein and herpes simplex-1 epitope in Parkinson’s disease, a triggering role in the disease? J Neuroimmunol 291:110–114

    Article  CAS  PubMed  Google Scholar 

  • Caggiu E, Arru G, Hosseini S, Niegowska M, Sechi G, Zarbo IR et al (2019) Inflammation, Infectious Triggers, and Parkinson’s Disease. Front Neurol 10:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai M, Chai S, Xiong T, Wei J, Mao W, Zhu Y et al (2021) Aberrant expression of circulating MicroRNA leads to the dysregulation of alpha-synuclein and other pathogenic genes in Parkinson’s disease. Front Cell and Developmental Biol 9

  • Chahine LM, Stern MB, Chen-Plotkin A (2014) Blood-based biomarkers for Parkinson’s disease. Parkinsonism Relat Disord 20(Suppl 1):S99-103

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen ML, Chen CH (2007) Chronic antipsychotics treatment regulates MAOA, MAOB and COMT gene expression in rat frontal cortex. J Psychiatr Res 41:57–62

    Article  PubMed  Google Scholar 

  • Chen WW, Zhang X, Huang WJ (2016) Role of neuroinflammation in neurodegenerative dis (Review). Mol Med Rep 13:3391–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Yang J, Lü J, Cao S, Zhao Q, Yu Z (2018) Identification of aberrant circulating miRNAs in Parkinson’s disease plasma samples. Brain and Behavior 8:e00941

    Article  PubMed  PubMed Central  Google Scholar 

  • Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722

    Article  CAS  PubMed  Google Scholar 

  • Cohen JE, Lee PR, Fields RD (2014) Systematic identification of 3’-UTR regulatory elements in activity-dependent mRNA stability in hippocampal neurons. Philosophical transactions of the Royal Society of London Series B, Biological sciences, p 369

    Google Scholar 

  • Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS (2013) Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab 18:29–42

    Article  CAS  PubMed  Google Scholar 

  • Dassati S, Schweigreiter R, Buechner S, Waldner A (2021) Celecoxib promotes survival and upregulates the expression of neuroprotective marker genes in two different in vitro models of Parkinson’s disease. Neuropharmacology 194:108378

    Article  CAS  PubMed  Google Scholar 

  • Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Reutiman TJ, Folsom TD, Bell C, Nos L, Fried P et al (2006) Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacology : Official Publication of the Am College of Neuropsychopharmacol 31:1888–1899

    Article  CAS  Google Scholar 

  • Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S et al (2019) Statins and the brain: more than lipid lowering agents? Curr Neuropharmacol 17:59–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Esparcia P, Llorens F, Carmona M, Ferrer I (2014) Complex deregulation and expression of cytokines and mediators of the immune response in Parkinson’s disease brain is region dependent. Brain Pathology (zurich, Switzerland) 24:584–598

    Article  CAS  Google Scholar 

  • Gasser T, Hardy J, Mizuno Y (2011) Milestones in PD genetics. Movement Disorders : Official J Movement Disorder Soc 26:1042–1048

    Article  Google Scholar 

  • Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Huang XF, Deng C (2009) Aripiprazole differentially affects mesolimbic and nigrostriatal dopaminergic transmission: implications for long-term drug efficacy and low extrapyramidal side-effects. Int J Neuropsychopharmacol 12:941–952

    Article  CAS  PubMed  Google Scholar 

  • Heman-Ackah SM, Hallegger M, Rao MS, Wood MJ (2013) RISC in PD: the impact of microRNAs in Parkinson’s disease cellular and molecular pathogenesis. Front Mol Neurosci 6:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter RL, Dragicevic N, Seifert K, Choi DY, Liu M, Kim HC et al (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100:1375–1386

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki RF (2017) Herpes simplex virus type 1 and Alzheimer’s disease: possible mechanisms and signposts. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 31:3216–3226

    Article  CAS  Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet (london, England) 386:896–912

    Article  CAS  Google Scholar 

  • Kim T, Vidal GS, Djurisic M, William CM, Birnbaum ME, Garcia KC et al (2013) Human LilrB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science (new York, NY) 341:1399–1404

    Article  CAS  Google Scholar 

  • Lang AE, Lozano AM (1998) Parkinson's disease. Second of two parts. The New England J Med 339:1130–43

  • Leng Y, Wang Z, Tsai LK, Leeds P, Fessler EB, Wang J et al (2015) FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol Psychiatry 20:215–223

    Article  CAS  PubMed  Google Scholar 

  • Mandrekar JN (2010) Receiver operating characteristic curve in diagnostic test assessment. Journal of Thoracic Oncology : Official Publication of the International Association for the Study of Lung Cancer 5:1315–1316

    Article  Google Scholar 

  • Marlin MC, Li G (2015) Biogenesis and function of the NGF/TrkA signaling endosome. Int Rev Cell Mol Biol 314:239–257

    Article  CAS  PubMed  Google Scholar 

  • Mitchell BM, Bloom DC, Cohrs RJ, Gilden DH, Kennedy PG (2003) Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. J Neurovirol 9:194–204

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M et al (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180:147–150

    Article  CAS  PubMed  Google Scholar 

  • Kramarz B, Roncaglia P (2018) Improving the Gene Ontology Resource to Facilitate More Informative Analysis and Interpretation of Alzheimer's Disease Data. 9

  • Koszła O, Stępnicki P (2021) Current approaches and tools used in drug development against Parkinson's disease. 11

  • Lin YE, Lin SH, Chen WC, Ho CT, Lai YS, Panyod S et al (2016) Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. J Ethnopharmacol 187:57–65

    Article  PubMed  Google Scholar 

  • Lin CH, Chang CH, Tai CH, Cheng MF, Chen YC, Chao YT et al (2021) A double-blind, randomized, controlled trial of lovastatin in early-stage Parkinson’s disease. Movement Disorders : Official Journal of the Movement Disorder Society 36:1229–1237

    Article  CAS  Google Scholar 

  • Qiu S, Palavicini JP, Wang J, Gonzalez NS, He S, Dustin E et al (2021) Adult-Onset CNS Myelin Sulfatide Deficiency is Sufficient to Cause Alzheimer’s Disease-like Neuroinflammation and Cognitive Impairment 16:64

    CAS  Google Scholar 

  • Rocha NP, de Miranda AS, Teixeira AL (2015) Insights into neuroinflammation in Parkinson’s disease: from biomarkers to anti-inflammatory based therapies. Biomed Res Int 2015:628192

    PubMed  PubMed Central  Google Scholar 

  • Sellbach AN, Boyle RS, Silburn PA, Mellick GD (2006) Parkinson’s disease and family history. Parkinsonism Relat Disord 12:399–409

    Article  PubMed  Google Scholar 

  • Shen J, Chen XC, Li WJ, Han Q, Chen C, Lu JM et al (2020) Identification of Parkinson’s Disease-Related Pathways and Potential Risk Factors 48:300060520957197

    CAS  Google Scholar 

  • Shinde S, Arora N, Bhadra U (2013) A complex network of microRNAs expressed in brain and genes associated with amyotrophic lateral sclerosis. International Journal of Genomics 2013:383024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shu P, Fu H, Zhao X, Wu C, Ruan X, Zeng Y et al (2017) MicroRNA-214 modulates neural progenitor cell differentiation by targeting Quaking during cerebral cortex development. Sci Rep 7:8014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simunovic F, Yi M, Wang Y, Stephens R, Sonntag KC (2010) Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease. PLoS ONE 5:e8856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sîrbulescu RF, Ilieş I, Zupanc GK (2015) Matrix metalloproteinase-2 and -9 in the cerebellum of teleost fish: Functional implications for adult neurogenesis. Mol Cell Neurosci 68:9–23

    Article  PubMed  CAS  Google Scholar 

  • Taoufik E, Petit E, Divoux D, Tseveleki V, Mengozzi M, Roberts ML et al (2008) TNF receptor I sensitizes neurons to erythropoietin- and VEGF-mediated neuroprotection after ischemic and excitotoxic injury. Proc Natl Acad Sci USA 105:6185–6190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng HC, Dichter MA (2005) Platelet-derived growth factor-BB pretreatment attenuates excitotoxic death in cultured hippocampal neurons. Neurobiol Dis 19:77–83

    Article  CAS  PubMed  Google Scholar 

  • Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA et al (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157:1015–1022

    Article  Google Scholar 

  • VanGuilder Starkey HD, Van Kirk CA, Bixler GV, Imperio CG, Kale VP, Serfass JM et al (2012) Neuroglial expression of the MHCI pathway and PirB receptor is upregulated in the hippocampus with advanced aging. Journal of Molecular Neuroscience : MN 48:111–126

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Chen Y, Liu M, Cao Q, Wang Q, Zhou S et al (2020) The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats 295:8374–86

  • Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I et al (2017) Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med 377:1954–1963

    Article  CAS  PubMed  Google Scholar 

  • Williams-Gray CH, Wijeyekoon R, Yarnall AJ, Lawson RA, Breen DP, Evans JR et al (2016) Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Movement Disorders : Official Journal of the Movement Disorder Society 31:995–1003

    Article  CAS  Google Scholar 

  • Wolters EC, Jansen EN, Tuynman-Qua HG, Bergmans PL (1996) Olanzapine in the treatment of dopaminomimetic psychosis in patients with Parkinson’s disease. Neurology 47:1085–1087

    Article  CAS  PubMed  Google Scholar 

  • Wright Willis A, Evanoff BA, Lian M, Criswell SR, Racette BA (2010) Geographic and ethnic variation in Parkinson disease: a population-based study of US Medicare beneficiaries. Neuroepidemiology 34:143–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Yousefi M, Peymani M, Ghaedi K, Irani S, Etemadifar M (2022) Significant modulations of linc001128 and linc0938 with miR-24-3p and miR-30c-5p in Parkinson disease. Sci Rep 12:2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li Q, Liu C, Gao S, Ping H, Wang J et al (2016) MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer’s disease. Neurotoxicology 56:139–149

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Zhang MM, Liu M, Tan ZG, Qin QL, Jiang YG (2021) LncRNA XIST sponges miR-199a-3p to modulate the Sp1/LRRK2 signal pathway to accelerate Parkinson’s disease progression. Aging 13:4115–4137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Jinglei Bao. Administrative support: Wansheng Chang. Provision of materials and samples: Yanjun Zhao and Jinglei Bao. Data collection and collation: Yanjun Zhao and Jinglei Bao. Data analysis and interpretation: Jinglei Bao and Wansheng Chang. All authors have read and agreed to the publication of the manuscript.

Corresponding author

Correspondence to Yanjun Zhao.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Chang, W. & Zhao, Y. Diagnosis and Drug Prediction of Parkinson’s Disease Based on Immune-Related Genes. J Mol Neurosci 72, 1809–1819 (2022). https://doi.org/10.1007/s12031-022-02043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-022-02043-5

Keywords

Navigation