Skip to main content
Log in

Expressional characterization of two class I trehalose-6-phosphate synthase genes in Hevea brasiliensis (para rubber tree) suggests a role in rubber production

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

In plants, trehalose-6-phosphate (Tre6P) synthesized by the Tre6P synthase (TPS) acts as a signal metabolite in regulating sucrose metabolism in relation to plant growth and development. The Hevea genome predicts a total of 14 TPS genes, and two class I TPS members, HbTPS1 and 2, were explored here for their expressions under various hormone and abiotic stress treatments. HbTPS1 and 2 expressions in latex, cytoplasm of rubber-producing laticifers, were markedly affected by the treatments of ethephon (2-chloroethylphosphonic acid, an ethylene releaser), 2,4-dichlorophenoxyacetic acid, jasmonic acid and salicylic acid although in a distinct manner. HbTPS1 and 2 expressions were significantly up-regulated in a similar manner by cold (5 °C) and heat (40 °C) as examined in Hevea seedling leaves and roots, and by wounding in latex. In comparison, the drought treatment (20% PEG) posed a different effect on HbTPS1 and 2 expressions in Hevea seedlings. For example, in roots, HbTPS1 transcripts accumulated with the treatment, whereas those of HbTPS2 decreased for the first 24 h. Various hormone- and stress-responsive elements could be in silico predicted in HbTPS1 and 2 promoters, and a universal expression was observed for the HbTPS1::GUS activity in all growth stages of transgenic Arabidopsis. These results, coupled with the fact of rubber biosynthesis as a defense response using sucrose as the precursor molecule, propose a potential role of TPS genes in regulating rubber production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen GC, Flores-Vergara MA, Krasynanski S et al (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325

    Article  CAS  PubMed  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E et al (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Ball P (2000) Fresh and dry. Nat News. doi:10.1038/news000720-3

    Google Scholar 

  • Bell W, Klaassen P, Ohnacker M et al (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CZFl, a regulator of carbon catabolite inactivation. Eur J Biochem 209:951–959

    Article  CAS  PubMed  Google Scholar 

  • Boudreau BA, Larson TM, Brown DW et al (2013) Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: role of trehalose-6-phosphate synthase. Fungal Genet Biol 57:1–10

    Article  CAS  PubMed  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R et al (2001) Growth stage based phenotypic analysis of Arabidopsis a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • d’Auzac J, Jacob JL, Prévôt JC et al (1997) The regulation of cis-polyisoprene production (natural rubber) from Hevea brasiliensis. In: Pandalai SG (ed) Recent research developments in plant physiology, vol 1. Research Signpost, Trivandrum, pp 273–332

    Google Scholar 

  • Delorge I, Figueroa CM, Feil R et al (2015) Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis thaliana. Biochem J 466:283–290

    Article  CAS  PubMed  Google Scholar 

  • Du HW, Zhang ZX, Li JS (2010) Isolation and functional characterization of a waterlogging-induced promoter from maize. Plant Cell Rep 29:1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Duan CF, Rio M, Leclercq J et al (2010) Gene expression pattern in response to wounding, methyl jasmonate and ethylene in the bark of Hevea brasiliensis. Tree Physiol 30:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Eastmond PJ, van Dijken AJ, Spielman M et al (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235

    Article  CAS  PubMed  Google Scholar 

  • Elbein AD (1974) The metabolism of alpha, alpha-trehalose. Adv Carbohydr Chem Biochem 30:227–256

    Article  CAS  PubMed  Google Scholar 

  • Ezcurra I, Ellerström M, Wycliffe P et al (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709

    Article  CAS  PubMed  Google Scholar 

  • Fernandez O, Bethencourt L, Quero A et al (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    Article  CAS  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG et al (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge LF, Chao DY, Shi M et al (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    Article  CAS  PubMed  Google Scholar 

  • Glasel JA (1995) Validity of nucleic acid purities monitored by 260 nm/280 nm absorbance ratios. Biotechniques 18:62–63

    CAS  PubMed  Google Scholar 

  • Goddijn O, Smeekens S (1998) Sensing trehalose biosynthesis in plants. Plant J 14:143–146

    Article  CAS  PubMed  Google Scholar 

  • Gómez LD, Gilday A, Feil R et al (2010) AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. Plant J 64:1–13

    PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M et al (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347:1–39

    Google Scholar 

  • Jang IC, Oh SJ, Seo JS et al (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Fu FL, Zhang SZ et al (2010) Cloning and characterization of functional trehalose-6-phosphate synthase gene in maize. J Plant Biol 53:134–141

    Article  CAS  Google Scholar 

  • Karim S, Aronsson H, Ericson H et al (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    Article  CAS  PubMed  Google Scholar 

  • Kosmas SA, Argyrokastritis A, Loukas MG et al (2006) Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223:329–339

    Article  CAS  PubMed  Google Scholar 

  • Lapp D, Patterson B, Elbein A (1971) Properties of a trehalose phosphate synthetase from Mycobacterium smegmatis. J Biol Chem 246:4567–4579

    CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HP, Qin YX, Xiao XH et al (2011a) Screening of valid reference genes for real-time RT-PCR data normalization in Hevea brasiliensis and expression validation of a sucrose transporter gene HbSUT3. Plant Sci 181:132–139

    Article  CAS  PubMed  Google Scholar 

  • Li HW, Zang BS, Deng XW et al (2011b) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Liu SJ, Lan JX, Zhou BH et al (2015) HbNIN2, a cytosolic alkaline/neutral-invertase, is responsible for sucrose catabolism in rubber-producing laticifers of Hevea brasiliensis (para rubber tree). New Phytol 206:709–725

    Article  CAS  PubMed  Google Scholar 

  • Lowe RG, Lord M, Rybak K et al (2009) Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum. Fungal Genet Biol 46:381–389

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34:550–563

    Article  CAS  Google Scholar 

  • Lunn JE, Feil R, Hendriks JH et al (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP-glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda JA, Avonce N, Suárez R et al (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Mu M, Lu XK, Wang JJ et al (2016) Genome-wide Identification and analysis of the stress-resistance function of the TPS (trehalose-6-phosphate synthase) gene family in cotton. BMC Genet 17:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Nwaka S, Holzer H (1998) Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 58:197–237

    Article  CAS  PubMed  Google Scholar 

  • Petzold EW, Himmelreich U, Mylonakis E et al (2006) Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect Immun 74:5877–5887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat R, Xu ZF, Yao KM et al (2005) Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Mol Biol 57:629–643

    Article  CAS  PubMed  Google Scholar 

  • Rieping M, Schoffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet 231:226–232

    CAS  PubMed  Google Scholar 

  • Schultz J, Milpetz F, Bork P et al (1998) SMART: a simple modular architecture research tool identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibéril Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Eur J Biochem 268:5655–5666

    Article  PubMed  Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK et al (2012) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98–112

    Article  PubMed  Google Scholar 

  • Suárez R, Wong A, Ramirez M et al (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21:958–966

    Article  PubMed  Google Scholar 

  • Tang CR, Qi JY, Li HP et al (2007) A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). J Biochem Biophys Methods 70:749–754

    Article  CAS  PubMed  Google Scholar 

  • Tang B, Chen J, Yao Q et al (2010a) Characterization of a trehalose-6-phosphate synthase gene from Spodoptera exigua and its function identification through RNA interference. J Insect Physiol 56:813–821

    Article  CAS  PubMed  Google Scholar 

  • Tang CR, Huang DB, Yang JH et al (2010b) The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant Cell Environ 33:1708–1720

    Article  CAS  PubMed  Google Scholar 

  • Tang CR, Yang M, Fang YJ et al (2016) The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants 2:16073

    Article  CAS  PubMed  Google Scholar 

  • van Dijken AJ, Schluepmann H, Smeekens SC (2004) Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol 135:969–977

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandesteene L, Ramon M, Le Roy K et al (2010) A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. Mol Plant 3:406–419

    Article  CAS  PubMed  Google Scholar 

  • Vuorio OE, Kalkkinen N, Londesborough J (1993) Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 216:849–861

    Article  CAS  PubMed  Google Scholar 

  • Washida H, Wu CY, Suzuki A et al (1999) Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol 40:1–12

    Article  CAS  PubMed  Google Scholar 

  • Winderickx J, de Winde JH, Crauwels M et al (1996) Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol Gen Genet 252:470–482

    CAS  PubMed  Google Scholar 

  • Xiao XH, Tang CR, Fang YJ et al (2014) Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. FEBS J 281:291–305

    Article  CAS  PubMed  Google Scholar 

  • Xin LS (2012) Cloning and functional analysis of the promoters of HbSUT3 and HbSUT5 in Hevea brasiliensis. Hainan University, Haikou

    Google Scholar 

  • Yadav UP, Ivakov A, Feil R et al (2014) The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot 65:1051–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HL, Liu YJ, Wang CL et al (2012) Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice. PLoS ONE 7:e42438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zähringer H, Thevelein J, Nwaka S (2000) Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol 35:397–406

    Article  PubMed  Google Scholar 

  • Zang BS, Li HW, Li WJ et al (2011) Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice. Plant Mol Biol 76:507–522

    Article  CAS  PubMed  Google Scholar 

  • Zentella R, Mascorro-Gallardo J, Van DP et al (1999) A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol 119:1473–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LF, Li WF, Han SY et al (2013) cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene 529:150–158

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li Y, Jia HX et al (2015) The heat shock factor gene family in Salix suchowensis: a genome-wide survey and expression profiling during development and abiotic stresses. Front Plant Sci 6:748

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (31570672) and the National High Technology Research and Development Program (863) (2013AA102605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaorong Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Fang, Y., Fan, Y. et al. Expressional characterization of two class I trehalose-6-phosphate synthase genes in Hevea brasiliensis (para rubber tree) suggests a role in rubber production. New Forests 48, 513–526 (2017). https://doi.org/10.1007/s11056-017-9578-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-017-9578-4

Keywords

Navigation