Skip to main content
Log in

Conserving genetic diversity in ecological restoration: a case study with ponderosa pine in northern Arizona, USA

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Our study used allozyme analyses to evaluate potential impacts of ecological restoration treatments on genetic diversity of ponderosa pine (Pinus ponderosa var. scopulorum) populations within the Fort Valley Experimental Forest near Flagstaff, AZ. Allele frequencies varied among pre-settlement clumps, with trees more closely related to each other within clumps. This clumpy spatial stand structure typical of reference conditions thus represents “genetic neighborhoods” and suggests restoration of clumpy versus more evenly dispersed trees in naturally regenerating stands will protect evolutionary genetic patterns. Compared to pre-settlement populations, post-settlement trees had slightly greater heterozygosity, and allelic richness and allele frequencies varied between these two age groups. These genetic differences could have resulted from different selective conditions under which the two age groups became established. Genetic diversity of populations created using different selection criteria for residual post-settlement trees did not vary but simulated removal of 75% of post-settlement trees decreased allelic richness. Maintaining more clumps created from post-settlement populations with higher tree densities across the landscape would be more effective at conserving allelic richness. Overall results of this study indicate use of genetic structure and diversity can help guide restoration treatments to help ensure adaptive potential is conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abella SR, Fulé PZ, Covington WW (2006) Diameter caps for thinning southwestern ponderosa pine forests: viewpoints, effects, and tradeoffs. J For 104(8):407–414

    Google Scholar 

  • Abella SR, Covington WW, Fulé PZ, Lentile LB, Sanchez Meador AJ, Morgan P (2007) Past, present, and future old growth in frequent-fire confer forests of the western United States. Ecol Soc 12(2):16. http://www.ecologyandsociety.org/vol12/iss2/art16

  • Adams WT (1992) Gene dispersal within forest tree populations. New For 6:217–240

    Article  Google Scholar 

  • Adams WT, Zuo J, Shimizu JY, Tappeiner JC (1998) Impact of alternative regeneration methods on genetic diversity in coastal Douglas-fir. For Sci 44(3):390–396

    Google Scholar 

  • Alfaro RI, Frady B, Vendramin GG, Dawson IK, Fleming RA, Saenz-Romero C, Lindig-Cisneros RA, Murdock T, Vinceti B, Navarro CM, Skroppa T, Baldinelli G, El-Kassaby YA, Loo J (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For Ecol Manag 333:76–87

    Article  Google Scholar 

  • Ally D, Ritland K (2007) A case study: looking at the effects of fragmentation on genetic structure in different life history stages of old-growth mountain hemlock (Tsuga mertensiana). J Hered 98:73–78

    Article  CAS  PubMed  Google Scholar 

  • Bacles CFE, Jump AS (2011) Taking a tree’s perspective on forest fragmentation genetics. Trends Plant Sci 16(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS, Mitton JB (1984) Peroxidase allozyme differentiation among successional stands of ponderosa pine. Am Midl Nat 112(1):43–49

    Article  Google Scholar 

  • Bergmann F, Gregorius HR, Larson JB (1990) Levels of genetic variation in European silver fir (Abies alba): are they related to the species decline? Genetica 82:1–10

    Article  Google Scholar 

  • Biondi F (1996) Decadal-scale dynamics at the Gus Pearson Natural Area: evidence for inverse (a)symmetric competition? Can J For Res 26:1397–1406

    Article  Google Scholar 

  • Bozzano M, Jalonen R, Thomas E, Boshier D, Galllo L, Carvers S, Bordacs S, Smith P, Loo J (eds) (2014) Genetic considerations in ecosystem restoration using native tree species. State of the world’s forest genetic resources—thematic study. FAO and Biodiversity International, Rome. www.fao.org/publications

  • Buchert GP, Rajora OP, Hood JV, Dancik BP (1997) Effects of harvesting on genetic diversity in old-growth eastern white pine in Ontario, Canada. Conserv Biol 11(3):747–758

    Article  Google Scholar 

  • Cheliak WM, Dancik BP, Morgan K, Yeh FCH, Strobeck C (1985) Temporal variation of the mating system in a natural population of jack pine. Genetics 109:569–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conkle MT (1992) Genetic diversity—seeing the forest through the trees. New For 6:5–22

    Article  Google Scholar 

  • Conkle MT, Hodgskiss PD, Nunnally LB, Hunter SC (1982) Starch gel electrophoresis of conifer seeds: a laboratory manual. USDA For. Serv. Gen. Tech. Rep. PSW-64

  • Covington WW, Fulé PZ, Moore MM, Hart SC, Kolb TE, Mast JN, Sackett SS, Wagner MR (1997) Restoring ecosystem health in ponderosa pine forests of the southwest. J For 95(4):23–29

    Google Scholar 

  • Covington WW, Fulé PZ, Hart SC, Weaver RP (2001) Modeling ecological restoration effects on ponderosa pine forest structure. Restor Ecol 9(4):421–431

    Article  Google Scholar 

  • Davis ML (1981) Habitat diversity and its effects on the genetic and ecological structure of two successional populations of Douglas-fir. PhD dissertation, University of Colorado, Boulder, CO, USA

  • Deacon NJ, Cavender-Bares J (2015) Limited pollen dispersal contributes to population genetic structure but not local adaptation in Quercus oleoides forests of Costa Rica. PLoS ONE 10(9):e0138783. doi:10.1371/journal.pone.0138783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de-Lucas AI, Gonzalez-Martinez SC, Vendramin GG, Hidalgo E, Heuertz M (2009) Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton. Mol Ecol 18:4564–4576

    Article  CAS  PubMed  Google Scholar 

  • Dickinson Y (2014) Landscape restoration of a forest with a historically mixed-severity fire regime: what was the historical landscape pattern of forest and opening? For Ecol Manag 331:264–271

    Article  Google Scholar 

  • Dubreuil M, Riba M, González-Martínez SC, Sebastiani F, Mayol M (2010) Genetic effects of chronic habitat fragmentation revisited: strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am J Bot 97(2):303–310

    Article  PubMed  Google Scholar 

  • Dumroese RK, Williams MI, Stanturf JA, St. Clair JB (2015) Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering. New For 46:947–964

    Article  Google Scholar 

  • Dutech C, Sork VL, Irwin AJ, Smouse PE, Davis FW (2005) Gene flow and fine-scale genetic structure in a wind-pollinated tree species Quercus lobata (Fagaceae). Am J Bot 92:252–261

    Article  CAS  PubMed  Google Scholar 

  • Dyer RJ, Sork VL (2001) Pollen pool heterogeneity in shortleaf pine, Pinus echinata Mill. Mol Ecol 10:859–866

    Article  CAS  PubMed  Google Scholar 

  • Eckert AJ, Eckert ML, Hall BD (2010) Effects of historical demography and ecological context on spatial patterns of genetic diversity within foxtail pine (Pinus balfouriana; Pinaceae) stands located in the Klamath Mountains, California. Am J Bot 97(4):650–659

    Article  PubMed  Google Scholar 

  • El-Kassaby YA (2000) Impacts of industrial forestry on genetic diversity of temperate forest trees. In: Mátyás C (ed) Forest genetics and sustainability. Kluwer Academic Publishers, Dordrecht, pp 155–170

    Chapter  Google Scholar 

  • El-Kassaby YA, Jaquish B (1996) Population density and mating pattern in western larch. J Hered 87:438–443

    Article  Google Scholar 

  • El-Kassaby YA, Ritland K (1996) Impact of selection and breeding on the genetic diversity in Douglas-fir. Biol Conserv 5:795–813

    Google Scholar 

  • Ellstrand NC (1992) Gene flow among seed plant populations. New For 6:241–256

    Article  Google Scholar 

  • Epperson BK (2003) Geographical genetics. Princeton University Press, Princeton

    Google Scholar 

  • Espeland EK, Emery NC, Mercer KL, Woolbright SA, Kettenring KM, Gepts P, Etterson JR (2016) Evolution of plant materials for ecological restoration: insights from the applied and basic literature. J Appl Ecol. doi:10.1111/1365-2664.12739

    Google Scholar 

  • Fageria MS, Rajora OP (2013) Effects of harvesting of increasing intensities on genetic diversity and population structure of white spruce. Evol Appl 6:778–794

    Article  Google Scholar 

  • Feldman R, Tomback DF, Koehler J (1999) Cost of mutualism: competition, tree morphology, and pollen production in limber pine clusters. Ecology 80(1):324–329

    Article  Google Scholar 

  • Fulé PZ, McHugh C, Heinlein TA, Covington WW (2001) Potential fire behavior reduced following forest restoration treatments. In: Vance RK, Edminster CB, Covington WW, Blake JA (comps) Ponderosa pine ecosystems restoration and conservation: steps toward stewardship; 2000 April 25–27; Flagstaff, AZ. Proceedings RMRS-P-22. USDA Forest Service, Rocky Mountain Research Station, Ogden, pp 28–35

  • Fulé PZ, Crouse JE, Roccaforte JP, Kalies RL (2012) Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior? For Ecol Manag 269:68–81

    Article  Google Scholar 

  • Goncharenko GG, Zadeika IV, Birgelis JJ (1995) Genetic structure diversity and differentiation of Norway spruce (Picea abies [L.] Karst.) in natural populations of Latvia. For Ecol Manag 72:31–38

    Article  Google Scholar 

  • Greene DF, Johnson EA (1993) Seed mass and dispersal capacity in wind-dispersed diaspores. Oikos 67:69–74

    Article  Google Scholar 

  • Gregorius HR (1980) The probability of losing an allele when diploid genotypes are sampled. Biometrics 36:643–652

    Article  CAS  PubMed  Google Scholar 

  • Gullberg U, Yazdani R, Rudin D (1982) Genetic differentiation between adjacent populations of Pinus sylvestris. Silva Fenn 16:205–214

    Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 45:53–70

    Google Scholar 

  • Hampe A, El Masri L, Petit RJ (2010) Origin of spatial genetic structure in an expanding oak population. Mol Ecol 19:459–471

    Article  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Article  Google Scholar 

  • Hawley GJ, Schaberg PG, DeHayes DH, Brissette JC (2005) Silviculture alters the genetic structure of an eastern hemlock forest in Maine, USA. Can J For Res 35:143–150

    Article  Google Scholar 

  • Hedrick PW (2000) Genetics of populations, 2nd edn. Jones and Bartlett Publishers, Sudbury, p 629

    Google Scholar 

  • Iwaizumi MG, Takahashi M, Isoda K, Austerlitz F (2013) Consecutive five-year analysis of paternal and maternal gene flow and contributions of gametic heterogeneities to overall genetic composition of dispersed seeds of Pinus densiflora. Am J Bot 100(9):1896–1904

    Article  CAS  PubMed  Google Scholar 

  • Jacobs DF, Oliet JA, Aronson J, Bolte A, Bullock JM, Donoso PJ, Landhausser SM, Madsen P, Peng S, Rey-Benayas JM, Weber JC (2015) Restoring forests: what constitutes success in the twenty-first century? New For 46:601–614

    Article  Google Scholar 

  • Johnson JM, Vander Wall SB, Borchert MM (2003) A comparative analysis of seed and cone characteristics and seed-dispersal strategies of three pines in the subsection Sabinianae. Plant Ecol 168:69–84

    Article  Google Scholar 

  • Jones FA, Hamrick JL, Peterson CJ, Squiers ER (2006) Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra. Mol Ecol 15:851–861

    Article  CAS  PubMed  Google Scholar 

  • Larson AJ, Stover KC, Keyes CR (2012) Effects of restoration thinning on spatial heterogeneity in mixed-conifer forest. Can J For Res 42:1505–1517

    Article  Google Scholar 

  • Latta RG (2006) Integrating patterns across multiple genetic markers to infer spatial processes. Landsc Ecol 21:809–820

    Article  Google Scholar 

  • Latta RG, Linhart YB, Fleck D, Elliott M (1998) Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine. Evolution 52(1):61–67

    Article  Google Scholar 

  • Ledig FT (1986) Conservation strategies for forest gene resources. For Ecol Manag 14:77–90

    Article  Google Scholar 

  • Ledig FT, Kitzmiller JH (1992) Genetic strategies for reforestation in the face of global climate change. For Ecol Manag 50:153–169

    Article  Google Scholar 

  • Lee SW, Choi WY, Kim WW, Kim ZS (2000) Genetic variation of Taxus cuspidata Sieb. et Zucc. In Korea. Silvae Genet 49(3):124–130

    Google Scholar 

  • Linhart YB (1988) Ecology and evolutionary studies of ponderosa pine in the Rocky Mountains. In: Baumgartner DM, Lotan JE (eds) Ponderosa pine: the species and its management. Symposium proceedings, Sept. 29–Oct 1, 1987, Spokane WA, USA, pp 77–89

  • Linhart YB, Mitton JB (1985) Relationship among reproduction, growth rates, and protein heterozygosity in ponderosa pine. Am J Bot 72(2):181–184

    Article  Google Scholar 

  • Linhart YB, Mitton JB, Sturgeon KB, Davis ML (1981a) Genetic variation in space and time in a population of ponderosa pine. Heredity 46:407–426

    Article  Google Scholar 

  • Linhart YB, Mitton JB, Sturgeon KB, Davis ML (1981b) Analysis of genetic architecture in populations of ponderosa pine. In: Conkle MT, technical coordinator. Proceedings of the symposium on isozymes of North American forest trees and forest insects, July 27, 1979, Berkeley, California. USDA Forest Service Gen. Tech. Rep. PSW-GTR-48. Pacific Southwest Forest and Range Exp. Station, Berkeley, CA, pp 53–59

  • Marquardt PE, Echt CS, Epperson BK, Pubanz DM (2007) Genetic structure, diversity and inbreeding of eastern white pine under different management conditions. Can J For Res 37(12):2652–2662

    Article  CAS  Google Scholar 

  • Marshall DR, Brown AHD (1975) Optimum sampling strategies in genetic conservation. In: Frankel HO, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, pp 53–80

    Google Scholar 

  • Mast JN, Fulé PZ, Moore MM, Covington WW, Waltz AEM (1999) Restoration of presettlement age structure of an Arizona ponderosa pine forest. Ecol Appl 9(1):228–239

    Article  Google Scholar 

  • Mijangos JL, Pacioni F, Spencer PBS, Craig MD (2015) Contribution of genetics to ecological restoration. Mol Ecol 24:22–37

    Article  PubMed  Google Scholar 

  • Miller MP (1997) Tools for population genetic analyses [TFPGA v: 1.3]. Version 1.3. Northern Arizona University, Flagstaff

    Google Scholar 

  • Mitton JB (1992) The dynamic mating systems of conifers. New For 6:197–216

    Article  Google Scholar 

  • Mitton JB, Linhart YB, Hamrick JL, Beckman JS (1977) Observations on the genetic structure and mating system of ponderosa pine in the Colorado Front Range. Theor Appl Genet 51:5–13

    Article  CAS  PubMed  Google Scholar 

  • Mitton JB, Linhart YB, Sturgeon KB, Hamrick JL (1979) Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. J Hered 70:86–89

    Article  CAS  Google Scholar 

  • Namkoong G (1984) A control concept of gene conservation. Silvae Genet 33(4–5):160–463

    Google Scholar 

  • Namkoong G (1992) Biodiversity—issues in genetics, forestry and ethics. For Chron 68(4):438–443

    Article  Google Scholar 

  • Neale DB (1985) Genetic implications of shelterwood regeneration of Douglas-fir in southwest Oregon. For Sci 31(4):995–1005

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newton AC, Cantarello E (2015) Restoration of forest resilience: an achievable goal? New For 46:645–668

    Article  Google Scholar 

  • NFGEL (2000) National Forest Genetic Electrophoresis Laboratory standard operating procedures. NFGEL, USDA Forest Service, Camino

    Google Scholar 

  • Nijensohn SE, Schaberg PG, Hawley GJ, DeHayes DH (2005) Genetic subpopulation structuring in and its implications in a mature eastern white pine stand. Can J For Res 35:1041–1052

    Article  Google Scholar 

  • Noss RF, Beier P, Covington WW, Grumbine RE, Lindenmayer DB, Prather JW, Schmiegelow F, Sisk TD, Vosick DJ (2006) Recommendations for integrating restoration ecology and conservation biology in ponderosa pine forests of the southwestern United States. Restor Ecol 14(1):4–10

    Article  Google Scholar 

  • O’Malley DM, Allendorf FW, Blake GM (1979) Inheritance of isozyme variation and heterozygosity in Pinus ponderosa. Biochem Genet 17(3–4):233–250

    Article  PubMed  Google Scholar 

  • Ostergren DM, Abrams JB, Lowe KA (2008) Fire in the forest: public perceptions of ecological restoration in north-central Arizona. Ecol Restor 26(1):51–60

    Article  Google Scholar 

  • Pandey M, Rajora OP (2012) Genetic diversity and differentiation of core vs. peripheral populations of eastern white cedar, Thuja occidentalis (Cupressaceae). Am J Bot 99(4):690–699

    Article  PubMed  Google Scholar 

  • Parchman TL, Benkman CW, Jenkins B, Buerkle CA (2011) Low levels of population genetic structure in Pinus contorta (Pinaceae) across a geographic mosaic of co-evolution. Am J Bot 98:669–679

    Article  PubMed  Google Scholar 

  • Pazouki L, Shanjani PS, Fields PD, Martins K, Suhhorutsenko M, Viinalass H, Niinemets U (2016) Large within-population genetic diversity of the widespread conifer Pinus sylvestris at its soil fertility limit characterized by nuclear and chloroplast microsatellite markers. Eur J For Res 135:161–177

    Article  CAS  Google Scholar 

  • Piotti A, Leonardi S, Heuertz M, Buiteveld J, Geburek T, Gerber S, Kramer K, Vettori C, Vendramin GG (2013) Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure? PLoS ONE 8(9):e73391. doi:10.1371/journal.pone.0073391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter KM, Hipkins VD, Mahalovich MF, Means RE (2015) Nuclear genetic variation across the range of ponderosa pine (Pinus ponderosa): phylogeography, taxonomic and conservation implications. Tree Genet Genomes 11:38. doi:10.1007/s11295-015-0865-y

    Article  Google Scholar 

  • Rajora OP, Mosseler A (2001) Challenges and opportunities for conservation of forest genetic resources. Euphytica 118:197–212

    Article  Google Scholar 

  • Rajora OP, Rahman MH, Buchert GP, Dancik BP (2000) Microsatellite DNA analyses of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario. Mol Ecol 9:339–348

    Article  CAS  PubMed  Google Scholar 

  • Rajora OP, Mosseler A, Major JE (2002) Mating system and reproductive fitness traits of eastern white pine (Pinus strobus) in large, central versus small, isolated, marginal populations. Can J Bot 80:1173–1184

    Article  Google Scholar 

  • Ratnam W, Rajora OP, Finkeldey R, Aravanopoulos F, Bouvet J-M, Vaillencourt RE, Kanashiro M, Fady B, Tomita M, Vinson C (2014) Genetic effects of forest management practices: global synthesis and perspectives. For Ecol Manag 333:52–65

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49(6):1280–1283

    Article  Google Scholar 

  • Reynolds RT, Sanchez Meador AJ, Youtz JA, Nicolet T, Matonis MS, Jackson PL, DeLorenzo DG, Graves AD (2013) Restoring composition and structure in southwestern frequent-fire forests: a science based framework for improving ecosystem resiliency. Gen. Tech. Rep. RMRS-GTR-310. USDA Forest Service, Rocky Mountain Research Station, Fort Collins

  • Richardson BA, Brunsfeld SJ, Klopfenstein NB (2002) DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial colonization and population genetic structure of whitebark pine (Pinus albicaulis). Mol Ecol 11:215–227

    Article  CAS  PubMed  Google Scholar 

  • Riggs LA (1990) Conserving genetic resources on-site in forest ecosystems. For Ecol Manag 35:45–68

    Article  Google Scholar 

  • Roberds JH, Conkle MT (1984) Genetic structure in loblolly pine stands: allozyme variation in parents and progeny. For Sci 30(2):319–329

    Google Scholar 

  • Roccaforte JP, Fulé PZ, Covington WW (2010) Monitoring landscape-scale ponderosa pine restoration treatment implementation and effectiveness. Restor Ecol 18(6):820–833

    Article  Google Scholar 

  • Roccaforte JP, Huffman DW, Fulé PZ, Covington WW, Chancellor WW, Stoddard MT, Crouse JE (2015) Forest structure and fuels dynamics following ponderosa pine restoration treatments, White Mountains, Arizona, USA. For Ecol Manag 337:174–185

    Article  Google Scholar 

  • Rogers DL, Millar CI, Westfall RD (1999) Fine-scale genetic structure of whitebark pine (Pinus albicaulis): associations with watershed and growth form. Evolution 53:74–90

    Article  Google Scholar 

  • Sanchez Meador AJ, Parysow PF, Moore MM (2011) A new method for delineating tree patches and assessing spatial reference conditions of ponderosa pine forests in northern Arizona. Restor Ecol 19(4):490–499

    Article  Google Scholar 

  • Sanchez Meador AJ, Waring KM, Kalies EL (2015) Implications of diameter caps on multiple forest resource responses in the context of the four forests restoration initiative: results from the forest vegetation simulator. J For 113(2):219–230

    Google Scholar 

  • SAS Institute Inc. (2001) JMP IN. Version 4.0.3. Duxbury, Pacific Grove

    Google Scholar 

  • Savage M, Brown PM, Feddema J (1996) The role of climate in a pine forest regeneration pulse in the southwestern United States. Ecoscience 3(3):310–318

    Article  Google Scholar 

  • Schuster WSF, Mitton JB (2000) Paternity and gene dispersal in limber pine (Pinus flexilis James). Heredity 84:348–361

    Article  CAS  PubMed  Google Scholar 

  • SER (2004) The SER international primer on ecological restoration, version 2. Society for Ecological Restoration International. Washington, DC. http://www.ser.org

  • Shohami D, Nathan R (2014) Fire-induced population reduction and landscape opening increases gene flow via pollen dispersal in Pinus halepensis. Mol Ecol 23:70–81

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three methods for estimating average levels of gene flow. Evolution 43:1358–1368

    Article  Google Scholar 

  • Sorenson FC, Miles RS (1982) Inbreeding depression in height, height growth and survival of Douglas-fir, ponderosa pine and noble fir to 10 years of age. For Sci 28:283–292

    Google Scholar 

  • Stanturf JA (2015) Future landscapes: opportunities and challenges. New For 46:615–644

    Article  Google Scholar 

  • Staszak J, Grulke NE, Marrett MJ, Prus-Glowacki W (2007) Isozyme markers associated with O3 tolerance indicate shift in genetic structure of ponderosa and Jeffrey pine in Sequoia National Park, CA. Environ Pollut 149:366–375

    Article  CAS  PubMed  Google Scholar 

  • Stephens SL, Fry DL (2005) Spatial distribution of regeneration patches in an old-growth Pinus jeffreyi-mixed conifer forest in northwestern Mexico. J Veg Sci 16:693–702

    Google Scholar 

  • Thomas Z, Waring KM (2015) Enhancing resiliency and restoring ecological attributes in second-growth ponderosa pine stands in Northern New Mexico. For Sci 61(6):93–104

    Google Scholar 

  • Thomas BR, Macdonald SE, Hicks M, Adams DL, Hodgetts RB (1999) Effects of reforestation methods on genetic diversity of lodgepole pine: an assessment using microsatellite and randomly amplified polymorphic DNA markers. Theor Appl Genet 98:793–801

    Article  Google Scholar 

  • Thomas E, Jalonen R, Loo J, Boshier D, Gallo L, Cavers S, Bordacs S, Smith P, Bozzano M (2014) Genetic considerations in ecosystem restoration using native tree species. For Ecol Manag 333:66–75

    Article  Google Scholar 

  • Tomback DF, Linhart YB (1990) The evolution of bird-dispersed pines. Evol Ecol 4:185–219

    Article  Google Scholar 

  • Vander Wall SB (2008) On the relative contributions of wind vs. animals to seed dispersal of four Sierra Nevada pines. Ecology 89(7):1837–1849

    Article  PubMed  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Viard F, EL-Kassaby YA, Ritland K (2001) Diversity and genetic structure in populations of Pseudotsuga menziesii (Pinaceae) at chloroplast microsatellite loci. Genome 44:336–344

    Article  CAS  PubMed  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associates Inc., Sunderland, p 445

    Google Scholar 

  • Wheeler NC, Guries RP (1982) Population structure, genic diversity and morphological variation in Pinus contorta Dougl. Can J For Res 12:595–606

    Article  Google Scholar 

  • Wheeler NC, Steiner KC, Schlarbaum SE, Neale DB (2015) The evolution of forest genetics and tree improvement research in the United States. J For 113(5):500–510

    Google Scholar 

  • White AS (1985) Presettlement regeneration patterns in a southwestern ponderosa pine stand. Ecology 66(2):589–594

    Article  Google Scholar 

  • Williams MA, Baker WL (2012) Spatially extensive reconstructions show variable-severity fire and heterogeneous structure in historical western United States dry forests. Glob Ecol Biogeogr 21:1042–1052

    Article  Google Scholar 

  • Woods JH, Blake GM, Allendorf FW (1983) Amount and distribution of isozyme variation in ponderosa pine from eastern Montana. Silvae Genet 32:151–156

    CAS  Google Scholar 

  • Wymore AS, Bothwell HM, Compson ZG, Lamit LJ, Walker FM, Woolbright SA, Whitham TG (2014) Community genetics applications for forest biodiversity and policy: planning for the future. In: Fenning T (ed) Challenges and opportunities for the world’s forests in the 21st century, forestry sciences, vol 81. Springer, Berlin

    Google Scholar 

  • Yazdani R, Lindgren D (1992) Gene dispersion after natural regeneration under a widely-spaced seed-tree stand of Pinus sylvestris (L.). Silvae Genet 41(1):1–5

    Google Scholar 

  • Yeh FC, Yang R, Boyle T (1997) Popgene. Version 1.31. University of Alberta, Alberta

    Google Scholar 

Download references

Acknowledgements

We thank the McIntire-Stennis program and AZ Bureau of Forestry, and the USDA Forest Service Rocky Mountain Research Station for funding this project; the NAU Ecological Restoration Institute for aging the cores; the USDA Forest Service NFGEL for assistance with allozyme analyses; and graduate students in the NAU School of Forestry for their marksmanship needed to collect tissue samples. Finally, thanks to the reviewers for their excellent suggestions and feedback which improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. DeWald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeWald, L.E., Kolanoski, K.M. Conserving genetic diversity in ecological restoration: a case study with ponderosa pine in northern Arizona, USA. New Forests 48, 337–361 (2017). https://doi.org/10.1007/s11056-016-9565-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-016-9565-1

Keywords

Navigation