Skip to main content
Log in

Gene flow among seed plant populations

  • Review paper
  • Mating systems, gene dispersal, and genetic structure within population
  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Gene flow is a critical determinant of population genetic structure, playing an important role in both evolutionary and applied plant population genetics. Four methods have been used to estimate rates of gene flow among plant populations. I review and reconcile the data collected by these methods. The following generalization emerges: although gene flow varies substantially among species, populations, seasons, and even individual plants, at physical isolation distances of hundreds to thousands of meters, gene flow levels are frequently sufficient to counteract genetic drift and moderate levels of directional selection. This pattern suggests the genetic structure of natural plant populations is more dynamic than generally supposed. Furthermore, substantial and variable gene flow has implications for plant breeding, conservation genetics, and the potential for the escape of engineered genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, W. T. and Birkes, D. S. 1990. Estimating mating patterns in forest tree populations. In: Hattemer, H. H. and Fineschi, S. (Eds) Biochemical markers in the population genetics of forest trees. S.P.B. Academic Publishing, BV. The Hague (in press).

    Google Scholar 

  • Allendorf, F. W. 1983. Isolation, gene flow, and genetic differentiation among populations. In: Schonewald-Cox, C. M., Chambers, S. M., MacBryde, B. and Thomas, W. L. (Eds) Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin Cummings Publishing, Menlo Park. pp. 51–65.

    Google Scholar 

  • Antonovics, J. 1968. Evolution in closely adjacent plant populations. VI. Manifold effects of gene flow. Heredity 32: 507–524.

    Google Scholar 

  • Barton, N. H. and Slatkin, M. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56: 409–415.

    Google Scholar 

  • Bos, M., Harmens, H. and Vrieling, K. 1986. Gene flow in Plantago. I. Gene flow and neighborhood size in P. lanceolata. Heredity 56: 43–54.

    Google Scholar 

  • Bradshaw, A. D. 1972. Some evolutionary consequences of being a plant. Evol. Biol. 5: 25–47.

    Google Scholar 

  • Campbell, D. R. and Waser, N. M. 1989. Variation in pollen flow within and among populations of Ipomopsis aggregata. Evolution 43: 1444–1455.

    Google Scholar 

  • Chakraborty, R., Meagher, T. R., and Smouse, P. E. 1988. Parentage analysis with genetic markers in natural populations. I. The expected proportion of offspring with unambiguous paternity. Genetics 118: 527–536.

    Google Scholar 

  • Crane, M. B. and Mather, K. 1943. The natural cross-pollination of crop plants with particular reference to the radish. An. Appl. Biol. 30: 301–308.

    Google Scholar 

  • Crow, J. F. 1986. Basic concepts in population, quantitative, and evolutionary genetics. New York, W. H. Freeman.

    Google Scholar 

  • Devlin, B. and Ellstrand, N. C. 1990. The development and application of a refined method for estimating gene flow from angiosperm paternity analysis. Evolution 44: 248–259.

    Google Scholar 

  • Devlin, B., Roeder, K., and Ellstrand, N. C. 1988. Fractional paternity assignment: theoretical development and comparison to other methods. Theor. App. Genet. 76: 369–380.

    Google Scholar 

  • Docters van Leeuwen, W. M. 1936. Krakatau, 1883 to 1933. Ann. Jard. Bot. Buitenzorg. 56–57: 1–506.

    Google Scholar 

  • Edmonds, R. L. 1979. Aerobiology: the ecological systems approach. Dowden, Hutchinson, and Ross. Stroudsburg, PA.

    Google Scholar 

  • El-Kassaby, Y. A. and Ritland, K. 1986. Low levels of pollen contamination in a Douglasfir seed orchard as detected by allozyme markers. Silv. Genet. 35: 224–228.

    Google Scholar 

  • Ellstrand, N. C. 1988. Pollen as a vehicle for the escape of engineered genes? In: Hodgson, J. and Sugden, A. M. (Eds) Planned Release of Genetically Engineered Organisms (Trends in Biotechnology/Trends in Ecology and Evolution Special Publication) Elsevier Publications, Cambridge. pp. S30-S32.

    Google Scholar 

  • Ellstrand, N. C. 1991. Gene flow by pollen: implications for plant conservation genetics. Oikos, (in press).

  • Ellstrand, N. C., Devlin, B. and Marshall, D. L. 1989. Gene flow by pollen into small populations: data from experimental and natural stands of wild radish. Proc. Nat. Acad. Sci., U.S.A. 86: 9044–9047.

    Google Scholar 

  • Ellstrand, N. C. and Hoffman. C. A. 1990. Hybridization as an avenue for escape of engineered genes. BioScience 40: 438–442.

    Google Scholar 

  • Ellstrand, N. C. and Marshall, D. L. 1985. Interpopulation gene flow by pollen in wild radish, Raphanus sativus. Am. Nat. 126:606–616.

    Google Scholar 

  • Ellstrand, N. C., Torres, A. M., and Levin, D. A. 1978. Density and the rate of apparent outcrossing in Helianthus annuus (Asteraceae). Syst. Bot. 3: 403–407.

    Google Scholar 

  • Endler, J. A. 1973. Gene flow and population differentiation. Science 179: 243–250.

    Google Scholar 

  • Endler, J. A. 1977. Geographic variation, speciation, and clines. Princeton University Press, Princeton.

    Google Scholar 

  • Ennos, R. A. and Dodson, R. K. 1987. Pollen success, functional gender, and assortative mating in an experimental plant population. Heredity 58:119–128.

    Google Scholar 

  • Epperson, B. K. 1990. Spatial patterns of genetic variation within plant populations. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L., and Weir, B. S. (Eds) Plant population genetics, breeding and resources. Sinauer Associates, Sunderland. pp. 229–253.

    Google Scholar 

  • Friedman, S. T. and Adams, W. T. 1985. Estimation of gene flow into two seed orchards of loblolly pine (Pinus taeda L.). Theor. Appl. Genet. 69:609–615.

    Google Scholar 

  • Fryxell, P. A. 1957. Mode of reproduction in higher plants. Bot. Rev. 23: 135–233.

    Google Scholar 

  • Gillespie, J. H. 1975. The role of migration in the genetic structure of populations in temporally spatially varying environments. I. Conditions for polymorphism. Am. Nat. 109: 127–135.

    Google Scholar 

  • Golenberg, E. M. 1987. Estimation of gene flow and genetic neighborhood size by indirect methods in a selling annual, Triticum dicoccoides. Evolution 41:1326–1334.

    Google Scholar 

  • Govindaraju, D. R. 1988a. Relationship between dispersal ability and levels of gene flow in plants. Oikos 52: 31–35.

    Google Scholar 

  • Govindaraju, D. R.. 1988b. A note on the relationship between outcrossing rate and gene flow in plants. Heredity 61: 401–404.

    Google Scholar 

  • Govindaraju, D. R.. 1989. Estimates of gene flow in forest trees. Biol. J. Linn. Soc. 37: 345–357.

    Google Scholar 

  • Grant, V. 1980. Gene flow and the homogeneity of species populations. Biol. Zbl. 99: 157–169.

    Google Scholar 

  • Grant, V. 1985. The problem of gene flow on a geographical scale. Zhurnal Obschei Biologii 46: 20–31.

    Google Scholar 

  • Guries, R. R. and Ledig, F. T. 1982. Genetic diversity and population structure in pitch pine (Pinus rigida Mill.). Evolution 36: 387–402.

    Google Scholar 

  • Haldane, J. B. S. 1930. A mathematical theory of natural and artificial selection. Part IV. Isolation. Proc. Cambridge Philos. Soc. 26: 220–230.

    Google Scholar 

  • Hamrick, J. L. 1982. Plant population genetics and evolution. Am. J. Bot. 69: 1685–1693.

    Google Scholar 

  • Hamrick, J. L. 1987. Gene flow and distribution of genetic variation in plant populations. In: Urbanska, K. (Ed) Differentiation in higher plants. Academic Press, New York, pp. 53–67.

    Google Scholar 

  • Hamrick, J. L., Griswold, G. B., and Godt, M. J. 1992. Association between Slatkin's measure of gene flow and the dispersal ability of plant species. Am. Nat. (in press).

  • Hamrick, J. L. and Loveless, M. D. 1986. The influence of seed dispersal mechanisms on the genetic structure of plant populations. In: Estrada, A. and Fleming, T. H. (Eds) Frugivores and seed dispersal. Dr W Junk, Publishers, Dordrecht, pp. 211–223.

    Google Scholar 

  • Hamrick, J. L. and Loveless, M. D. 1989. The genetic structure of tropical tree populations, associations with reproductive biology. In: Bock, J. H. and Linhart, Y. B. (Eds) The evolutionary ecology of plants. Westview Press, Boulder, pp. 129–146.

    Google Scholar 

  • Hamrick, J. L. and Schnabel, A. 1985. Understanding the genetic structure of plant populations: some old problems and a new approach. In: Gregorius, H. R. (Ed.) Population genetics in forestry. Springer-Verlag, Berlin. pp. 50–70.

    Google Scholar 

  • Handel, S. N. 1976. Restricted pollen flow of two woodland herbs by neutron-activation analysis. Nature 260: 422–423.

    Google Scholar 

  • Handel, S. N.. 1982. Dynamics of gene flow in an experimental population of Cucumis melo (Cucurbitaceae). Am. J. Bot. 69: 1538–1546.

    Google Scholar 

  • Handel, S. N.. 1983a. Pollination ecology, plant population structure, and gene flow. In: Real, L. (Ed) Pollination biology. Academic Press, Orlando. pp. 163–211.

    Google Scholar 

  • Handel, S. N.. 1983b. Contrasting gene flow patterns and genetic subdivision in adjacent populations of Cucumis sativus (Cucurbitaceae). Evolution 37: 760–771.

    Google Scholar 

  • Howe, H. F. and Smallwood, J. 1982. Ecology of seed dispersal. Ann. Rev. Ecol. Syst. 13: 201–228.

    Google Scholar 

  • Jain, S. K. and Bradshaw, A. D. 1966. Evolutionary divergence among adjacent plant populations. I. The evidence and its theoretical analysis. Heredity 21: 407–441.

    Google Scholar 

  • Kimura, M. and Weiss, G. 1964. The stepping-stone model of population structure and the decrease of genetic correlation with distance. Genetics 49: 561–576.

    Google Scholar 

  • Knight, S. E. and Waller, D. M. 1987. Genetic consequences of outcrossing in the cleistogamous annual, Impatiens capensis. I. Population-genetic structure. Evolution 41: 969–978.

    Google Scholar 

  • Levin, D. A. 1975. Pest pressure and recombination systems in plants. Am. Nat. 109: 437–451.

    Google Scholar 

  • Levin, D. A.. 1978. Some genetic consequences of being a plant. In Brussard, P. F. (Ed) Ecological genetics: the interface. Springer-Verlag, New York. pp. 189–212.

    Google Scholar 

  • Levin, D. A.. 1981. Dispersal versus gene flow in plants. Ann. Mo. Bot. Gard. 68: 233–253.

    Google Scholar 

  • Levin, D. A.. 1983. An immigration-hybridization episode in Phlox. Evolution 37: 575–582.

    Google Scholar 

  • Levin, D. A.. 1984. Immigration in plants: an exercise in the subjunctive. In: Dirzo, R. and Sarukhan, J. (Eds) Perspectives on plant population ecology. Sinauer, Sunderland. pp. 242–260.

    Google Scholar 

  • Levin, D. A.. 1988. Consequences of stochastic elements in plant migration. Am. Nat. 132: 643–651.

    Google Scholar 

  • Levin, D. A. and Kerster, H. W. 1968. Local gene dispersal in Phlox. Evolution 22: 130–139.

    Google Scholar 

  • Levin, D. A. and Kerster, H. W. 1974. Gene flow in seed plants. Evol. Biol. 7: 139–220.

    Google Scholar 

  • Meagher, T. R. and Thomson, E. 1986. The relationship between single-parent and parent-pair likelihoods in genealogy reconstruction. Theor. Pop. Biol. 29: 87–106.

    Google Scholar 

  • Meagher, T. R. and Thomson, E. 1987. Analysis of parentage for naturally established seedlings of Chamaelirium luteum (Liliaceae). Ecology 68: 803–812.

    Google Scholar 

  • Moran, G. F. and Hopper, S. D. 1983. Genetic diversity and the insular population structure of the rare granite rock species, Eucalyptus caesia Benth. Austral. J. Bot. 31: 161–172.

    Google Scholar 

  • Muona, O. 1990. Population genetics in forestry. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L., and Weir, B. S. (Eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates, Sunderland, pp. 282–298.

    Google Scholar 

  • Neale, D. B. 1983. Population genetic structure of the shelterwood regeneration system in southwest Oregon. Ph.D. Diss. Oregon State Univ., Corvallis.

    Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA, 70: 3321–3323.

    Google Scholar 

  • Plucknett, D. L., Smith, N. J. H., Williams, J. H., and Anishetty, N. M. 1987. Gene Banks and the World's Food. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Richards, A. J. 1986. Plant Breeding Systems. Allen and Unwin, London.

    Google Scholar 

  • Rieseberg, L. H., Zona, S., Aberbom, L. and Martin, T. D. 1989. Hybridization in the island endemic, Catalina mahogany. Conservation Biol. 3: 52–58.

    Google Scholar 

  • Rohlf, F. J. and Schnell, G.D. 1971. An investigation of the isolation by distance model. Am. Nat. 105: 295–324.

    Google Scholar 

  • Sanderson, N. 1989. Can gene flow prevent reinforcement? Evolution 43: 1223–1235.

    Google Scholar 

  • Schaal, B. A. 1980. Measurement of gene flow in Lupinus texensis. Nature 284: 450–451.

    Google Scholar 

  • Schmitt, J. 1980. Pollinator foraging behavior and gene dispersal in Senecio (Compositae). Evolution 34:934–943

    Google Scholar 

  • Schoen, D. J. and Stewart, S. C. 1987. Variation in male fertilities and pairwise mating probabilities in Picea glauca. Genetics 116:141–152.

    Google Scholar 

  • Slatkin, M. 1973. Gene flow and selection in a cline. Genetics 75: 733–756.

    Google Scholar 

  • Slatkin, M.. 1981. Estimating levels of gene flow in natural populations. Genetics 99:323–335.

    Google Scholar 

  • Slatkin, M.. 1985a. Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16: 393–430.

    Google Scholar 

  • Slatkin, M.. 1985b. Rare alleles as indicators of gene flow. Evolution 39: 53–65.

    Google Scholar 

  • Slatkin, M.. 1987. Gene flow and the geographic structure of natural populations. Science 236: 789–792.

    Google Scholar 

  • Slatkin, M. and Barton, N. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349–1368.

    Google Scholar 

  • Smith, D. B. and Adams, W. T. 1983. Measuring pollen contamination in clonal seed orchards with the aid of genetic markers. In: Proc. 17th Southern Forest Tree Improvement Conference. Univ. Georgia, Athens pp. 69–77.

    Google Scholar 

  • Smyth, C. A. and Hamrick, J. L. 1987. Realized gene flow via pollen in artificial populations of musk thistle, Carduus nutans L. Evolution 41: 613–619.

    Google Scholar 

  • Squillace, A. E. and Long, E. M. 1981. Proportion of pollen from nonorchard sources. In: Franklin, E. C. (Ed) Pollen management handbook. USDA Agricultural Handbook # 587, Washington DC, pp. 15–19.

    Google Scholar 

  • Thomson, J. D. and Thomson, B. A. 1989. Dispersal of Erythronium grandiflorum pollen by bumblebees: implications for gene flow and reproductive success. Evolution 43: 657–661.

    Google Scholar 

  • Tonsor, S. J. 1985. Intrapopulational variation in pollen-mediated gene flow in Plantago lanceolata L. Evolution 39: 775–782.

    Google Scholar 

  • Turner, M. E., Stephens, J. C., and Anderson, W. W. 1982. Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollinations. Proc. Nat. Acad. Sci., U.S.A. 79: 203–207.

    Google Scholar 

  • van Dijk, H. 1987. A method for the estimation of gene flow parameters from a population structure caused by restricted gene flow and genetic drift. Theor. Appl. Genet. 73: 724–736.

    Google Scholar 

  • Wade, M. J. and D. E. McCauley. 1988. Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42: 995–1005.

    Google Scholar 

  • Waser, N. M., Vickery, R. K., and Price, M. V. 1982. Patterns of seed dispersal and population differentiation in Mimulus guttatus. Evolution 36: 753–761.

    Google Scholar 

  • Weiss, G. and Kimura, M. 1965. A mathematical analysis of the stepping stone model of genetic correlation. J. Appl. Prob. 2: 129–149.

    Google Scholar 

  • Willson, M. F. 1983. Plant Reproductive Ecology. John Wiley and Sons, New York.

    Google Scholar 

  • Willson, M. F. 1984. Mating patterns in plants pp. 261–276. In: Dirzo, R. and Sarukhan, J. (Eds) Perspectives on plant population ecology. Sinauer, Sunderland.

    Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.

    Google Scholar 

  • Wright, S.. 1943. Isolation by distance. Genetics 28: 114–138.

    Google Scholar 

  • Wright, S.. 1946. Isolation by distance under diverse systems of mating. Genetics 31: 39–59.

    Google Scholar 

  • Wright, S.. 1951. The genetical structure of populations. Ann. Eugenics 15: 323–354.

    Google Scholar 

  • Wright, S.. 1982. Character change, speciation, and the higher taxa. Evolution 36: 427–443.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellstrand, N.C. Gene flow among seed plant populations. New Forest 6, 241–256 (1992). https://doi.org/10.1007/BF00120647

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120647

Key words

Navigation