Skip to main content
Log in

The dynamic mating systems of conifers

  • Review paper
  • Mating systems, gene dispersal, and genetic structure within population
  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Conifer mating systems vary among species and within species; both ecological variables and genetic variation cause mating systems to be dynamic. Within species, estimates of rates of outcrossing vary among populations, among loci, and among individuals within stands. The level of outcrossing varies with stand density, age, and the abundance of local and foreign pollen. Variation in the mating success of both males and females violates the assumption that populations are randomly mating and at equilibrium, and justifies more quantitative analyses of mating systems. Allelic frequencies in the pollen pool and in the pool of receptive female surfaces may vary through a season and among seasons, producing positively assortative mating in time. Seed and seedling viability selects against homozygotes for lethal alleles and favors heterozygous genotypes, biasing estimates of outcrossing. Particularly fruitful topics of research include the genetic consequences of polyembryony, differential male and female mating success, and associations between specific genotypes and floral phenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, W. T. 1982. Clonal variation in pollen-related characteristics of Douglas fir. Can. J. For. Res. 12: 403–408.

    Google Scholar 

  • Adams, W. T. and Birkes, D. S. 1990a. Mating patterns in seed orchards, pp. 75–86. In: Proceedings of 20th Southern Forest Tree Improvement Conference, June 26–30, 1989, Charleston, South Carolina.

  • Adams, W. T. and Birkes, D. S. 1990b. Estimating mating patterns in forest tree populations. Proceedings, International Workshop on Plant Biology, Biochemical Markers in Population Genetics of Forest Trees. Institute for Agroforestry of the National Research Council of Italy. Porano-Orvieto, Italy, October 11–13,1988.

    Google Scholar 

  • Adams, W. T. and Joly, R. J. 1980. Allozyme studies in loblolly pine seed orchards: clonal variation and frequency of progeny due to self-fertilization. Silvae Genet. 29: 1–4.

    Google Scholar 

  • Allard, R. W. 1990. Future directions in plant population genetics, evolution, and breeding, pp. 1–19. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Inc., Sunderland, Ma.

    Google Scholar 

  • Allard, R. W., Jain, S. K. and Workman, P. L. 1968. The genetics of inbreeding populations. Advances in Genetics 14: 55–131.

    Google Scholar 

  • Allard, R. W., Kahler, A. L. and Clegg, M. T. 1977. Estimation of mating cycle components of selection in plants, pp. 1–19. In: Christiansen, F. B. and Fenchel, T. M. (Eds) Measuring Selection in Natural Populations. Springer-Verlag, Berlin.

    Google Scholar 

  • Apsit, V. J. and Nakamura, R. R. and Wheeler, N. C. 1989. Differential male reproductive success in Douglas fir. Theor. Appl. Genet. 77: 681–684.

    Google Scholar 

  • Bijlsma, R., Allard, R. W. and Kahler, A. L. 1986. Nonrandom mating in an open-pollinated maize population. Genetics 112:669–680.

    Google Scholar 

  • Brotschol, J. V., Roberds, J. H. and Namkoong, G. 1986. Allozyme variation among North Carolina populations of Liriodendron tulipifera L. Silvae Genetica 35:131–138.

    Google Scholar 

  • Brown, A. H. D. 1979. Enzyme polymorphism in plant populations. Theor. Popul. Biol. 15: 1–42.

    Google Scholar 

  • Brown, A. H. D. 1990. Genetic characterization of plant mating systems, pp. 145–162. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Inc., Sunderland, Ma.

    Google Scholar 

  • Brown, A. H. D. and Allard, R. W. 1970. Estimation of the mating system in open-pollinated maize populations using isozyme polymorphisms. Genetics 66: 133–145.

    Google Scholar 

  • Brown, A. H. D., Barrett, S. C. H. and Moran, G. F. 1985. Mating system estimation in forest trees: Models, methods, and meanings, pp. 32–49. In: Gregorius, H. R. (Ed) Population Genetics in Forestry. Springer-Verlag, Berlin.

    Google Scholar 

  • Brown, A. H. D., Burdon, J. J. and Jarosz, A. M. 1989. Isozyme analysis of plant mating systems, pp. 73–86. In: Soltis, D. E. and Soltis, P. S. (Eds) Isozymes in Plant Biology. Dioscorides Press, Portland, OR.

    Google Scholar 

  • Boyle, J. B. and Morgenstern, E. K. 1986. Estimates of outcrossing rates in six populations of black spruce in central New Brunswick. Silvae Genetica 35:102–106.

    Google Scholar 

  • Bush, R. M. and Smouse, P. E. 1992. Evidence for the adaptive significance of allozymes in forest trees. This issue (pp. 179–196).

  • Charlesworth, D. and Charlesworth, B. 1987. Inbreeding depression and its evolutionary consequences. Ann. Rev. Ecol. Syst. 18: 237–268.

    Google Scholar 

  • Charlesworth, D., Schemske, D. W. and Sork, V. L. 1987. The evolution of plant reproductive characters: sexual versus natural selection, pp. 317–335. In: Stearns, S. C. (Ed) The Evolution of Sex and its Consequences. Birkhauser, Basel.

    Google Scholar 

  • Cheliak, W. M., Morgan, K., Strobeck, C., Yeh, F. C. H. and Dancik, B. P. 1983. Estimation of mating system parameters in plant populations using the EM algorithm. Theor. Appl. Genet. 65:157–161.

    Google Scholar 

  • Cheliak, W. M., Dancik, B. P., Morgan, K., Yeh, F. C. H. and Strobeck, C. 1985. Temporal variation of the mating system in a natural population of jack pine. Genetics 109: 569–584.

    Google Scholar 

  • Clegg, M. T. 1980. Measuring plant mating systems. BioScience 30:814–818.

    Google Scholar 

  • Clegg, M. T. and Epperson, B. K. 1985. Recent developments in population genetics. Adv. Genet. 23: 235–269.

    Google Scholar 

  • Coles, J. F. and Fowler, D. P. 1976. Inbreeding in neighboring trees in two white spruce populations. Silvae Genet. 25:29–34.

    Google Scholar 

  • Denti, D. and Schoen, D. J. 1988. Self-fertilization rates in white spruce: effect of pollen and seed production. J. Hered. 79: 284–288.

    Google Scholar 

  • Devlin, B., Roeder K. and Ellstrand, N. C. 1988. Fractional paternity assignment: Theoretical development and comparison to other methods. Theor. Appl. Genet. 76: 369–380.

    Google Scholar 

  • El-Kassaby, Y. A., Meagher, M. D. and Davidson, R. 1992. Temporal variation in the outcrossing rate in a natural stand of western white pine. submitted to Silvae Genetica.

  • El-Kassaby, Y. A., Meagher, M. D., Parkinson, J. and Portlock, F. T. 1987. Allozyme inheritance, heterozygosity and outcrossing rate among Pinus monticola near Ladysmith, British Columbia. Heredity 58: 173–181.

    Google Scholar 

  • El-Kassaby, Y. A., Parkinson, J. and Devitt, W. J. B. 1986. The effect of crown segment on the mating system in a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seed orchard. Silvae Genet. 35: 149–155.

    Google Scholar 

  • El-Kassaby, Y. A., Ritland, K. Fashler, A. M. K. and Devitt, W. J. B. 1988. The role of reproductive phenology upon the mating system of a Douglas-fir seed orchard. Silvae Genet. 37: 76–82.

    Google Scholar 

  • El-Kassaby, Y. A., Yeh, F. C. and Sziklai, O. 1981. Estimation of the outcrossing rate of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) using allozyme polymorphisms. Silvae Genet. 30:182–184.

    Google Scholar 

  • Ellstrand, N. C. 1984. Multiple paternity within the fruits of the wild radish Raphanus sativus. Am. Nat. 123: 819–828.

    Google Scholar 

  • Ellstrand, N. C. 1992. Gene flow among seed plant populations. This issue (pp. 241–256).

  • Ellstrand, N. C. and Marshall, D. L. 1985. Interpopulation gene flow by pollen in wild radish. Am. Nat. 126: 596–605.

    Google Scholar 

  • Ennos, R. A. and Clegg, M. T. 1982. Effect of population substructuring on estimates of outcrossing rate in plant populations. Heredity 48: 283–292.

    Google Scholar 

  • Epperson, B. K. and Allard, R. W. 1984. Allozyme analysis of the mating system in lodgepole pine populations. J. Hered. 75: 212–214.

    Google Scholar 

  • Erickson, V. J. and Adams, W. T. 1989. Mating success in a coastal Douglas-fir seed orchard as affected by distance and floral phenology. Can. J. For. Res. 19: 1248–1255.

    Google Scholar 

  • Erickson, V. J. and Adams, W. T. 1990. Mating system variation among individual ramets in a Douglas-fir seed orchard. Can. J. For. Res. 20:1672–1675.

    Google Scholar 

  • Farris, M. A. and Mitton, J. B. 1984. Population density, outcrossing rate, and heterozygote superiority in ponderosa pine. Evolution 38: 1151–1154.

    Google Scholar 

  • Fowler, D. P. 1965. Effects of inbreeding in red pine, Pinus resinosa Air. III. Factors affecting natural selfing. Silvae Genet. 14: 36–46.

    Google Scholar 

  • Franklin, E. C. 1970. Survey of mutant forms and inbreeding depression in species of the family Pinaceae. USDA For. Serv. Res. Pap. SE-61.

  • Friedman, S. T. and Adams, W. T. 1985a. Levels of outcrossing in two loblolly pine seed orchards. Silvae Genetica 34: 157–162.

    Google Scholar 

  • Friedman, S. T. and Adams, W. T. 1985b. Estimation of gene flow into two seed orchards of loblolly pine (Pines taeda L.). Theor. Appl. Genet. 69:609–615.

    Google Scholar 

  • Fripp, Y. J., Griffin, A. R. and Moran G. F. 1987. Variation in allelic frequencies in the outcross pollen pool of Eucalyptus regnans F. Muell. throughout a flowering season. Heredity 59:161–172.

    Google Scholar 

  • Furnier, G. R. and Adams, W. T. 1986. Mating system in natural populations of Jeffrey pine. Amer. J. Bot. 73:1009–1015.

    Google Scholar 

  • Fyfe, J. L. and Bailey, N. T. J. 1951. Plant breeding studies in leguminous forage crops. I. Natural crossbreeding in winter beans. J. Agric. Sci. 41: 371–378.

    Google Scholar 

  • Gibson, J. P. and Hamrick, J. L. 1991. Heterogeneity in pollen allele frequencies among cones, whorls, and trees of table mountain pine (Pinus pungens). Am. J. Bot. 78: 1244–1251.

    Google Scholar 

  • Govindaraju, D. R. 1988. Mating systems and the opportunity for group selection in plants. Evolutionary Trends in Plants 2: 99–106.

    Google Scholar 

  • Govindaraju, D. R. and Dancik, B. P. 1987. Allozyme heterozygosity and homeostasis in germination seeds of jack pine. Heredity 59: 279–283.

    Google Scholar 

  • Green, A. G., Brown, A. H. D. and Oram, R. N. 1980. Determination of outcrossing in a breeding population of Lupinus alpus L. Z. Pflanzenzucht. 84:181–191.

    Google Scholar 

  • Hamrick, J. L. 1983. The distribution of genetic variation within and among natural plant populations, pp. 335–348. In: Schonewald-Cox, C. Chambers, S., MacBryde, B. and Thomas, W. (Eds), Genetics and Conservation. Benjamin/Cummings, Menlo Park, Ca.

    Google Scholar 

  • Hamrick, J. L. 1987. Gene flow and distribution of genetic variation in plant populations, pp. 53–67. In: Urbanska, K. M. (Ed) Differentiation Patterns in Higher Plants. Academic Press, New York.

    Google Scholar 

  • Hamrick, J. L. 1989. Isozymes and the analysis of genetic structure in plant populations, pp. 87–105. In Soltis, D. E. and Soltis, P. S. (Eds) Isozymes in Plant Biology. Dioscorides Press, Portland, Oregon.

    Google Scholar 

  • Hamrick, J. L. and Schnabel, A. 1985. Understanding the genetic structure of plant populations: some old problems and a new approach, pp. 50–70. In: Gregorius, H. R. (Ed), Lecture Notes in Biomathematics 60: Population Genetics in Forestry. Springer Verlag, Berlin.

    Google Scholar 

  • Imam, A. G. and Allard, R. W. 1965. Population studies in predominantly self-pollinated species. VI. Genetic variability between and within natural populations of wild oats from differing habitats in California. Genetics 51: 49–67.

    Google Scholar 

  • Jeffreys, A. J., Wilson, V. and Thein, S. L. 1985a. Hypervariable “minisatellite” regions in human DNA. Nature (London) 314: 67–73.

    Google Scholar 

  • Jeffreys, A. J., Wilson, V. and Thein, S. L. 1985b. Individual-specific “fingerprints” of human DNA. Nature (London) 316: 76–79.

    Google Scholar 

  • Jones, D. F. 1916. Natural cross-pollination in the tomato. Science 43: 509–510.

    Google Scholar 

  • King, J. N., Dancik, B. P. and Dhir, N. K. 1984. Genetic structure and mating system of white spruce (Picea glauca) in a seed production area. Can. J. For. Res. 14: 639–643.

    Google Scholar 

  • Knowles, P., Furrier, G. R., Aleksiuk, M. A. and Perry, D. J. 1987. Significant levels of self-fertilization in natural populations of tamarack. Can. J. Bot. 65: 1087–1091.

    Google Scholar 

  • Lande, R. and Schemske, D. W. 1985. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39: 24–40.

    Google Scholar 

  • Levin, D. A. and Kerster, H. W. 1974. Gene flow in seed plants. Evolutionary Biology 7: 139–220.

    Google Scholar 

  • Lindgren, D. 1975. The relationship between self-fertilization, empty seeds and seeds originating from selfing as a consequence of polyembryony. Stud. For. Suec. 126: 1–24.

    Google Scholar 

  • Linhart, Y. B., Mitton, J. B., Sturgeon, K. B. and Davis, M. L. 1981. Genetic variation in space and time in a population of ponderosa pine. Heredity 46: 407–426.

    Google Scholar 

  • Linhart, Y. B. and Mitton, J. B. 1985. Relationships among reproduction, growth rate, and protein heterozygosity in ponderosa pine. Amer. J. Bot. 72: 181–184.

    Google Scholar 

  • Linhart, Y. B. and Mitton, J. B. 1992. Reproductive tradeoffs and their consequences in ponderosa pine. (submitted to Ecology)

  • Loveless, M. D. and Hamrick, J. L. 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15: 65–95.

    Google Scholar 

  • Meagher, T. R. 1986. Analysis of paternity within a natural population of Chamaelirium leuteum. I. Identification of most-likely male parents. Am. Nat. 128: 129–215.

    Google Scholar 

  • Meagher, T. R. and Thompson, E. 1986. The relationship between single parent and parent pair genetic likelihoods in genealogy reconstruction. Theor. Pop. Biol. 29: 87–106.

    Google Scholar 

  • Mitton, J. B. 1983. Conifers, pp. 443–472. In: Tanksley S. and Orton, T. (Eds), Isozymes in Plant Genetics and Breeding, Part B. Elsevier, Amsterdam.

    Google Scholar 

  • Mitton, J. B. 1989. Physiological and demographic variation associated with allozyme variation, pp. 127–145. In: Soltis, D. E. and Soltis, P. S. (Eds) Isozymes in Plant Biology. Dioscorides Press, Portland, Oregon.

    Google Scholar 

  • Mitton, J. B. and Grant, M. C. 1984. Relationships among protein heterozygosity, growth rate, and developmental stability. Ann. Rev. Ecol. Syst. 15: 479–499.

    Google Scholar 

  • Mitton, J. B. and Jeffers, R. M. 1989. The genetic consequences of mass selection for growth rate in Engelmann spruce. Silvae Genetica 38: 6–12.

    Google Scholar 

  • Mitton, J. B., Linhart, Y. B., Davis, M. L. and Sturgeon, K. B. 1981. Estimation of outcrossing in ponderosa pine, Pinus ponderosa Laws., from patterns of segregation of protein polymorphisms and from frequencies of albino seedlings. Silvae Genetica 30: 117–121.

    Google Scholar 

  • Mitton, J. B., Linhart, Y. B., Hamrick, J. L. and Beckman, J. S. 1977. Observations on the genetic structure and mating system of ponderosa pine in the Colorado Front Range. Theor. Appl. Genet. 57: 5–13.

    Google Scholar 

  • Mopper, S., Mitton, J. B., Whitham, T. G., Cobb, N. S. and Christensen, K. M. 1991. Genetic differentiation and heterozygosity in pinyon pine associated with resistance to herbivory and environmental stress. Evolution 45: 989–999.

    Google Scholar 

  • Moran, G. F., Bell, J. C. and Matheson, A. C. 1980. The genetic structure and levels of inbreeding in a Pinus radiata D. Don seed orchard. Silvae Genet. 29: 190–193.

    Google Scholar 

  • Moran, G. F., Bell, J. C. and Turnbull, J. W. 1989. A cline in genetic diversity in river sheoak Casuarina cunningharmiana. Aust. J. Bot. 37: 169–180.

    Google Scholar 

  • Moran, G. F. and Brown, A. H. D. 1980. Temporal heterogeneity of outcrossing rates in alpine ash (Eucalyptus delegatensis). Theor. Appl. Genet. 57: 101–105.

    Google Scholar 

  • Moran, G. F. and Griffin, A. R. 1985. Non-random contribution of pollen in polycrosses of pinus radiata D. Don. Silvae Genet. 34: 117–121.

    Google Scholar 

  • Mueller-Starck, G. and Ziehe, M. 1984. Reproductive systems in conifer seed orchards. 3. Female and male fitnesses of individual clones realized in seeds of Piunus sylvestris L. Theor. Appl. Genet. 69:173–177.

    Google Scholar 

  • Muller, G. 1977a. Cross fertilization in a conifer stand inferred from gene-markers in seeds. Silvae Genetica 26: 223–226.

    Google Scholar 

  • Muller, G. 1977b. Investigations of the degree of natural self-fertilization in stands of Norway spruce (Picea abies (L.) Darst.) and Scots pine (Pinus sylvestris L.). Silvae Genet. 26: 207–217.

    Google Scholar 

  • Muona, O., Yazdani, R. and Rudin, D. 1987. Genetic change between life stages in Pinus sylvestris: allozyme variation in seeds and planted seedlings. Silvae Genet. 36: 39–42.

    Google Scholar 

  • Neale, D. B. and Adams, W. T. 1985a. Allozyme and mating system variation in balsam fir (Abies balsamea) across a continuous elevational transect. Can. J. Bot. 63: 2448–2453.

    Google Scholar 

  • Neale, D. B. and Adams, W. T. 1985b. The mating system in natural and shelterwood stands of Douglas-fir. Theor. Appl. Genet. 71: 201–207.

    Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321–3323.

    Google Scholar 

  • Pamilo, P. 1989. Estimating relatedness in social groups. Trends Ecol. Evol. 4: 353–355.

    Google Scholar 

  • Park, Y. S., and Fowler, D. P. 1982. Effects of inbreeding and genetic variances in a natural population of tamarack (Larix laricina (Du Roi) K. Koch) in eastern Canada. Silvae Genet 31: 21–26.

    Google Scholar 

  • Park, Y. S., Fowler, D. P. and Coles, J. F. 1984. Population studies of white spruce. II. Natural inbreeding and relatedness among neighboring trees. Can. J. For. Res. 14: 909–913.

    Google Scholar 

  • Perry, D. J. and Dancik, B. P. 1986. Mating system dynamics of lodgepole pine in Alberta, Canada. Silvae Genet. 35: 190–195.

    Google Scholar 

  • Perry, D. J. and Knowles, P. 1990. Evidence of high self-fertilization in natural populations of eastern white cedar (Thuja occidentalis). Can. J. Bot. 68: 663–668.

    Google Scholar 

  • Plessas, M. E. and Strauss, S. H. 1986. Allozyme differentiation among populations, stands and cohorts in Monterey pine. Can. J. For. Res. 16: 1155–1164.

    Google Scholar 

  • Queller, D. C. and Goodknight, K. F. 1989. Estimating relatedness using genetic markers. Evolution 43: 258–275.

    Google Scholar 

  • Ritland, K. 1983. Estimation of mating systems, pp. 289–302. In: Tanksley, S. D. and Orton, T. J. (Eds) Isozymes in Plant Genetics and Breeding. Part A. Elsevier, Amsterdam. 516 pp.

    Google Scholar 

  • Ritland, K. 1984. The effective proportion of self-fertilizantion with consanguineous matings in inbred populations. Genetics 106: 139–152.

    Google Scholar 

  • Ritland, K. 1985. The genetic-mating structure of subdivided populations. I. Open-mating model. Theor. Pop. Biol. 27: 51–74.

    Google Scholar 

  • Ritland, K. 1986. Joint maximum likelihood estimation of genetic and mating structure using open-pollinated progenies. Biometrics: 42: 25–43.

    Google Scholar 

  • Ritland, K. and El-Kassaby, Y. A. 1985. The nature of inbreeding in a seed orchard of Douglas fir as shown by an efficient multi-locus model. Theoret. Appl. Genet. 71: 375–384.

    Google Scholar 

  • Ritland, K. R. and Jain, S. 1981. A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity 47: 35–52.

    Google Scholar 

  • Sakai, K. I. and Miyazaki, Y. 1972. Genetic studies in natural populations of forest trees. II. Family analysis: a new method for quantitative genetic studies. Silvae Genet. 21: 149–154.

    Google Scholar 

  • Schemske, D. W. and Lande, R. 1985. The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution 39: 41–52.

    Google Scholar 

  • Schoen, D. J. and Cheliak, W. M. 1987. Genetics of the polycross. 2. Male fertility variation in Norway spruce, Picea abies (L.) Karst. Theor. Appl. Genet. 74: 554–559.

    Google Scholar 

  • Schoen, D. J. and Clegg, M. T. 1984. Estimation of mating system parameters when outcrossing events are correlated. Proc. Natl. Acad. Sci. USA 81: 5258–5262.

    Google Scholar 

  • Schoen, D. J. and Stewart, S. C. 1986. Variation in male reproductive investment and male reproductive success in white spruce. Evolution 40: 1109–1120.

    Google Scholar 

  • Schuster, W. S., Alles, D. L. and Mitton, J. B. 1989. Gene flow in limber pine: Evidence from pollination phenology and genetic differentiation along an elevational transect. Amer. J. Bot. 76: 1395–1403.

    Google Scholar 

  • Schuster, W. S. F. and Mitton, J. B. 1991. Relatedness within clusters of a bird-dispersed pine and the potential for kin interactions. Heredity 67: 41–48.

    Google Scholar 

  • Shaw, D. V. and Allard, R. W. 1981. Analysis of mating system parameters and population structure in Douglas-fir using single-locus and multilocus methods, pp 18–22. In: Conkle, M. T. (Ed) Isozymes of North American Forest Trees and Forest Insects. USDA For. Serv. Gen. Tech. Rep. PSW-48.

  • Shaw, D. V. and Allard, R. W. 1982a. Estimation of outcrossing rates in Douglas-fir using isozyme markers. Theor. Appl. Genet. 62: 113–120.

    Google Scholar 

  • Shaw, D. V. and Allard, R. W. 1982b. Estimation of outcrossing rates in Douglas-fir using allozyme markers. Theor. Appl. Genet. 62: 113–120.

    Google Scholar 

  • Shaw, D. V., Kahler, L. L. and Allard, R. W. 1981. A multilocus estimator of mating system parameters in plant populations. Proc. Natl. Acad. Sci. USA 78: 1298–1302.

    Google Scholar 

  • Shaw, D. V. and Allard, R. W. 1982. Isozyme heterozygosity in adult and open-pollinated embryo samples of Douglas-fir. Silvae. Fenn. 16: 115–121.

    Google Scholar 

  • Shea, K. L. 1987. Effects of population structure and cone production on outcrossing rates in Engelmann spruce and subalpine fir. Evolution 41: 124–136.

    Google Scholar 

  • Shen, H.-H., Rudin, D. and Lindgren, D. 1981. Study of pollination pattern in a scots pine seed orchard by means of isozyme analysis. Silvae Genet: 30: 7–15.

    Google Scholar 

  • Slatkin, M. 1985. Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16: 393–430.

    Google Scholar 

  • Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.

    Google Scholar 

  • Snyder, T. P., Steward, D. A. and Strickler, A. F. 1985. Temporal analysis of breeding structure in jack pine (Pinus banksiana Lamb.). Canad. J. For. Res. 15: 1159–1166.

    Google Scholar 

  • Sorensen, F. C. 1969. Embryonic genetic load in coastal Douglas fir, Pseudotsuga menziessii var. menziessii. Am. Nat. 103: 389–398.

    Google Scholar 

  • Sorensen, F. C. 1971. Estimate of self-fertility in coastal Douglas-fir from inbreeding studies. Silvae. Genet. 20: 115–120.

    Google Scholar 

  • Sorensen, F. C. 1982. The role of polyembryonal vitality in the genetic system of conifers. Evolution 36: 725–733.

    Google Scholar 

  • Surles, S. E., Hamrick, J. L. and Bongarten, B. C. 1990. Mating systems in open-pollinated families of black locust (Robinia pseudoacacia). Silvae Genetica 39: 35–40.

    Google Scholar 

  • Wright, J. W. 1976. Introduction to forest genetics. Academic Press, New York.

    Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.

    Google Scholar 

  • Wright, S. 1969. Evolution and the Genetics of Populations. Volume 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago. 511 pp.

    Google Scholar 

  • Yeh, F. C., Brune, A., Cheliak, W. M. and Chipman, D. C. 1983. Mating system of Eucalyptus citriodora in a seed production area. Can. J. For. Res. 13: 1051–1055.

    Google Scholar 

  • Yeh, F. C. and Morgan, K. 1987. Mating system and multilocus associations in a natural population of Pseudotsuga menziessii (Mirb.) Franco. Theor. Appl. Genet. 73: 799–808.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitton, J.B. The dynamic mating systems of conifers. New Forest 6, 197–216 (1992). https://doi.org/10.1007/BF00120645

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120645

Key words

Navigation