Skip to main content

Advertisement

Log in

Recent nanotechnological aspects and molecular targeting strategies for lung cancer therapy

  • Review Article
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Lung cancer is a complicated thoracic malignancy globally, resulting in molecular, biomolecular, and signaling pathway abnormalities. It is the most lethal form of cancer among males and females of all age groups. The annual incidence rate is 12%, and the death rate is 15% reported. The paradigm of gloomy diagnosis in the early stage of the diseases and metastatic/resistant tumor cell populations reinforces the necessary multidisciplinary advanced adaptive research procedures like molecular targeting and nanotechnology. This review emphasizes pivotal research on advanced novel treatment strategies for the management of lung cancer and under this, the application of molecular targeting, i.e., EGFR inhibitors, BRAF inhibitors, MEK inhibitors, ROS1 inhibitors, and ALK inhibitors with nanocarrier approaches such as liposomes, quantum dots, polymeric nanoparticles, biomimetic nanocarriers, and SLNs has been described. In the nanotechnology approach, the tremendous role of nanoparticles as drug carriers, bionanocarriers, and nanotheranostics is briefly illustrated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33

    Article  PubMed  Google Scholar 

  2. Inamura K (2017) Lung cancer: understanding its molecular pathology and the 2015 WHO classification. Front Oncol 7:193

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maiuthed A, Chantarawong W, Chanvorachote P (2018) Lung cancer stem cells and cancer stem cell-targeting natural compounds. Anticancer Res 38:3797–3809

    Article  CAS  PubMed  Google Scholar 

  4. Malhotra J, Malvezzi M, Negri E, La Vecchia C, Boffetta P (2016) Risk factors for lung cancer worldwide. Eur Respir J 48:889–902

    Article  PubMed  Google Scholar 

  5. Duma N, Santana-Davila R, Molina JR (2019) Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc 94:1623–1640

    Article  CAS  PubMed  Google Scholar 

  6. Senoo S, Ninomiya K, Hotta K, Kiura K (2019) Recent treatment strategy for advanced squamous cell carcinoma of the lung in Japan. Int J Clin Oncol 24:461–467

    Article  PubMed  Google Scholar 

  7. Wang BY, Huang JY, Chen HC, Lin CH, Lin SH, Hung WH, Cheng YF (2020) The comparison between adenocarcinoma and squamous cell carcinoma in lung cancer patients. J Cancer Res Clin Oncol 146:43–52

    Article  PubMed  Google Scholar 

  8. Weissferdt A (2014) Large cell carcinoma of lung: on the verge of extinction? Semin Diagn Pathol 31:278–288

    Article  PubMed  Google Scholar 

  9. Wang W, Hao Y, Liu Y, Li R, Huang DB, Pan YY (2021) Nanomedicine in lung cancer: current states of overcoming drug resistance and improving cancer immunotherapy. Wiley Interdiscip Rev Nanomedicine Nanobiotechnol 13:e1654

    Article  Google Scholar 

  10. Hussain S (2016) Nanomedicine for treatment of lung cancer. Adv Exp Med Biol 890:137–147

    Article  PubMed  Google Scholar 

  11. Kurmi BD, Kayat J, Gajbhiye V, Tekade RK, Jain NK (2010) Micro- and nanocarrier-mediated lung targeting. Expert Opin Drug Deliv 7:781–794

    Article  CAS  PubMed  Google Scholar 

  12. Kurmi BD, Paliwal SR (2022) Development and optimization of TPGS-based stealth liposome of doxorubicin using Box-Behnken design: characterization, hemocompatibility, and cytotoxicity evaluation in breast cancer cells. J Liposome Res 32:129–145

    Article  CAS  PubMed  Google Scholar 

  13. Li S, Xu S, Liang X, Xue Y, Mei J, Ma Y, Liu Y, Liu Y (2021) Nanotechnology: breaking the current treatment limits of lung cancer. Adv Healthcare Mater 10:e2100078

    Article  Google Scholar 

  14. Kurmi BD, Paliwal R, Paliwal SR (2020) Dual cancer targeting using estrogen functionalized chitosan nanoparticles loaded with doxorubicin-estrone conjugate: a quality by design approach. Int J Biol Macromol 164:2881–2894

    Article  CAS  PubMed  Google Scholar 

  15. Kandasamy G, Maity D (2021) Multifunctional theranostic nanoparticles for biomedical cancer treatments - a comprehensive review. Mater Sci Eng C, Mater Biol Appl 127:112199

    Article  CAS  PubMed  Google Scholar 

  16. Petty WJ, Paz-Ares L (2023) Emerging strategies for the treatment of small cell lung cancer: a review. JAMA Oncol 9:419–429

    Article  PubMed  Google Scholar 

  17. Yang S, Zhang Z, Wang Q (2019) Emerging therapies for small cell lung cancer. J Hematol Oncol 12:47

    Article  PubMed  PubMed Central  Google Scholar 

  18. de Scordilli M;Michelotti A, Bertoli E, De Carlo E, Del Conte A, Bearz A (2022) Targeted therapy and immunotherapy in early-stage non-small cell lung cancer: current evidence and ongoing trials. Int J Mol Sci 23:7222

  19. Wu SG, Shih JY (2018) Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer 17:38

    Article  PubMed  PubMed Central  Google Scholar 

  20. Provencio M, Calvo V, Romero A, Spicer JD, Cruz-Bermúdez A (2022) Treatment sequencing in resectable lung cancer: the good and the bad of adjuvant versus neoadjuvant therapy. Am Soc Clin Oncol Educ Book 42:1–18

    PubMed  Google Scholar 

  21. Roskoski R Jr (2019) Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol Res 139:395–411

    Article  CAS  PubMed  Google Scholar 

  22. Du X, Shao Y, Qin HF, Tai YH, Gao HJ (2018) ALK-rearrangement in non-small-cell lung cancer (NSCLC). Thorac Cancer 9:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Proietti I, Skroza N, Michelini S, Mambrin A, Balduzzi V, Bernardini N, Marchesiello A, Tolino E, Volpe S, Maddalena P, Di Fraia M, Mangino G, Romeo G, Potenza C (2020) BRAF inhibitors: molecular targeting and immunomodulatory actions. Cancers 12

  24. Morris TA, Khoo C, Solomon BJ (2019) Targeting ROS1 rearrangements in non-small cell lung cancer: crizotinib and newer generation tyrosine kinase inhibitors. Drugs 79:1277–1286

    Article  CAS  PubMed  Google Scholar 

  25. Kim C, Giaccone G (2018) MEK inhibitors under development for treatment of non-small-cell lung cancer. Expert Opin Investig Drugs 27:17–30

    Article  CAS  PubMed  Google Scholar 

  26. Markham A (2020) Pralsetinib: first approval. Drugs 80:1865–1870

    Article  CAS  PubMed  Google Scholar 

  27. Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, Heeroma K, Itoh Y, Cornelio G, Yang PC (2014) A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol : Off Publ Int Assoc Study Lung Cancer 9:154–162

    Article  CAS  Google Scholar 

  28. Rosell R, Morán T, Carcereny E, Quiroga V, Molina MA, Costa C, Benlloch S, Tarón M (2010) Non-small-cell lung cancer harbouring mutations in the EGFR kinase domain. Clin Transl Oncol : Off Publ Fed Spanish Oncol Soc Nat Cancer Inst of Mexico 12:75–80

    Article  CAS  Google Scholar 

  29. Reguart N, Remon J (2015) Common EGFR-mutated subgroups (Del19/L858R) in advanced non-small-cell lung cancer: chasing better outcomes with tyrosine kinase inhibitors. Futur Oncol (London, England) 11:1245–1257

    Article  CAS  Google Scholar 

  30. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, Okamoto I, Zhou C, Cho BC, Cheng Y, Cho EK, Voon PJ, Planchard D, Su WC, Gray JE, Lee SM, Hodge R, Marotti M, Rukazenkov Y, Ramalingam SS (2018) Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 378:113–125

    Article  CAS  PubMed  Google Scholar 

  31. Solassol I, Pinguet F, Quantin X (2019) FDA- and EMA-approved tyrosine kinase inhibitors in advanced EGFR-mutated non-small cell lung cancer: safety, tolerability, plasma concentration monitoring, and management. Biomolecules 9

  32. Naylor EC, Desani JK, Chung PK (2016) Targeted therapy and immunotherapy for lung cancer. Surg Oncol Clin N Am 25:601–609

    Article  PubMed  Google Scholar 

  33. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I, Fujita Y, Okinaga S, Hirano H, Yoshimori K, Harada T, Ogura T, Ando M, Miyazawa H, Tanaka T, Saijo Y, Hagiwara K, Morita S, Nukiwa T (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388

    Article  CAS  PubMed  Google Scholar 

  34. Yasumuro O, Uchida S, Kashiwagura Y, Suzuki A, Tanaka S, Inui N, Watanabe H, Namiki N (2018) Changes in gefitinib, erlotinib and osimertinib pharmacokinetics under various gastric pH levels following oral administration of omeprazole and vonoprazan in rats. Xenobiotica; Fate Foreign Compd Biol Syst 48:1106–1112

    Article  CAS  Google Scholar 

  35. Li J, Zhao M, He P, Hidalgo M, Baker SD (2007) Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clinical cancer research : an official journal of the American Association for Cancer Research 13:3731–3737

    Article  CAS  PubMed  Google Scholar 

  36. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM, Porta R, Cobo M, Garrido P, Longo F, Moran T, Insa A, De Marinis F, Corre R, Bover I, Illiano A, Dansin E, de Castro J, Milella M, Reguart N, Altavilla G, Jimenez U, Provencio M, Moreno MA, Terrasa J, Muñoz-Langa J, Valdivia J, Isla D, Domine M, Molinier O, Mazieres J, Baize N, Garcia-Campelo R, Robinet G, Rodriguez-Abreu D, Lopez-Vivanco G, Gebbia V, Ferrera-Delgado L, Bombaron P, Bernabe R, Bearz A, Artal A, Cortesi E, Rolfo C, Sanchez-Ronco M, Drozdowskyj A, Queralt C, de Aguirre I, Ramirez JL, Sanchez JJ, Molina MA, Taron M, Paz-Ares L (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246

    Article  CAS  PubMed  Google Scholar 

  37. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S, Ren S, Lu S, Zhang L, Hu C, Hu C, Luo Y, Chen L, Ye M, Huang J, Zhi X, Zhang Y, Xiu Q, Ma J, Zhang L, You C (2015) Final overall survival results from a randomised, phase III study of erlotinib versus chemotherapy as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer (OPTIMAL, CTONG-0802). Ann Oncol : Off J Eur Soc Med Oncol 26:1877–1883

    Article  CAS  Google Scholar 

  38. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong KK (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27:4702–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang JC, Wu YL, Schuler M, Sebastian M, Popat S, Yamamoto N, Zhou C, Hu CP, O’Byrne K, Feng J, Lu S, Huang Y, Geater SL, Lee KY, Tsai CM, Gorbunova V, Hirsh V, Bennouna J, Orlov S, Mok T, Boyer M, Su WC, Lee KH, Kato T, Massey D, Shahidi M, Zazulina V, Sequist LV (2015) Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol 16:141–151

    Article  CAS  PubMed  Google Scholar 

  40. Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, Lee CK, Sebastian M, Templeton A, Mann H, Marotti M, Ghiorghiu S, Papadimitrakopoulou VA (2017) Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 376:629–640

    Article  CAS  PubMed  Google Scholar 

  41. Onitsuka T, Uramoto H, Nose N, Takenoyama M, Hanagiri T, Sugio K, Yasumoto K (2010) Acquired resistance to gefitinib: the contribution of mechanisms other than the T790M, MET, and HGF status. Lung cancer (Amsterdam, Netherlands) 68:198–203

    Article  PubMed  Google Scholar 

  42. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M, Riely GJ (2013) Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res : An Off J Am Assoc Cancer Res 19:2240–2247

    Article  CAS  Google Scholar 

  43. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, Finley G, Kelsch C, Lee A, Coleman S, Deng Y, Shen Y, Kowanetz M, Lopez-Chavez A, Sandler A, Reck M (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378:2288–2301

    Article  CAS  PubMed  Google Scholar 

  44. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  CAS  PubMed  Google Scholar 

  45. Shaw AT, Solomon B (2011) Targeting anaplastic lymphoma kinase in lung cancer. Clin Cancer Res : An Off J Am Assoc Cancer Res 17:2081–2086

    Article  CAS  Google Scholar 

  46. Dziadziuszko R, Mok T, Peters S, Han JY, Alatorre-Alexander J, Leighl N, Sriuranpong V, Pérol M, de Castro Junior G, Nadal E, de Marinis F, Frontera OA, Tan DSW, Lee DH, Kim HR, Yan M, Riehl T, Schleifman E, Paul SM, Mocci S, Patel R, Assaf ZJ, Shames DS, Mathisen MS, Gadgeel SM (2021) Blood First Assay Screening Trial (BFAST) in treatment-naive advanced or metastatic NSCLC: initial results of the phase 2 ALK-positive cohort. J Thorac Oncol : Off Publ Int Assoc Study Lung Cancer 16:2040–2050

    Article  CAS  Google Scholar 

  47. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. The New England J Med 2015, 373, 1582

  48. Remon J, Pignataro D, Novello S, Passiglia F (2021) Current treatment and future challenges in ROS1- and ALK-rearranged advanced non-small cell lung cancer. Cancer Treat Rev 95:102178

    Article  CAS  PubMed  Google Scholar 

  49. Peters S, Mok TS, Gadgeel SM, Rosell R, Dziadziuszko R, Kim D-W, Perol M, Ou S-HI, Shaw AT, Bordogna W (2020) Updated overall survival (OS) and safety data from the randomized, phase III ALEX study of alectinib (ALC) versus crizotinib (CRZ) in untreated advanced ALK+ NSCLC. Am Soc Clin Oncol

  50. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, Ou SI, Pérol M, Dziadziuszko R, Rosell R, Zeaiter A, Mitry E, Golding S, Balas B, Noe J, Morcos PN, Mok T (2017) Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 377:829–838

    Article  CAS  PubMed  Google Scholar 

  51. Soria JC, Tan DSW, Chiari R, Wu YL, Paz-Ares L, Wolf J, Geater SL, Orlov S, Cortinovis D, Yu CJ, Hochmair M, Cortot AB, Tsai CM, Moro-Sibilot D, Campelo RG, McCulloch T, Sen P, Dugan M, Pantano S, Branle F, Massacesi C, de Castro G Jr(2017) First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet (London, England) 389:917-929

  52. Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, Chiari R, Bearz A, Lin CC, Gadgeel SM, Riely GJ, Tan EH, Seto T, James LP, Clancy JS, Abbattista A, Martini JF, Chen J, Peltz G, Thurm H, Ou SI, Shaw AT (2018) Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol 19:1654–1667

    Article  CAS  PubMed  Google Scholar 

  53. Lin JJ, Zhu VW, Schoenfeld AJ, Yeap BY, Saxena A, Ferris LA, Dagogo-Jack I, Farago AF, Taber A, Traynor A, Menon S, Gainor JF, Lennerz JK, Plodkowski AJ, Digumarthy SR, Ou SI, Shaw AT, Riely GJ (2018) Brigatinib in patients with alectinib-refractory ALK-positive NSCLC. J Thor Oncol : Off Publ Int Assoc Study Lung Cancer 13:1530–1538

    Article  Google Scholar 

  54. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R, Mark EJ, Batten JM, Chen H, Wilner KD, Kwak EL, Clark JW, Carbone DP, Ji H, Engelman JA, Mino-Kenudson M, Pao W, Iafrate AJ (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol : Off J Am Soc Clin Oncol 30:863–870

    Article  CAS  Google Scholar 

  55. Davies KD, Doebele RC (2013) Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res : An Off J Am Assoc Cancer Res 19:4040–4045

    Article  CAS  Google Scholar 

  56. Singal G, Miller PG, Agarwala V, Li G, Kaushik G, Backenroth D, Gossai A, Frampton GM, Torres AZ, Lehnert EM, Bourque D, O’Connell C, Bowser B, Caron T, Baydur E, Seidl-Rathkopf K, Ivanov I, Alpha-Cobb G, Guria A, He J, Frank S, Nunnally AC, Bailey M, Jaskiw A, Feuchtbaum D, Nussbaum N, Abernethy AP, Miller VA (2019) Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database. JAMA 321:1391–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiari R, Ricciuti B, Landi L, Morelli AM, Delmonte A, Spitaleri G, Cortinovis DL, Lamberti G, Facchinetti F, Pilotto S, Verusio C, Chella A, Bonanno L, Galetta D, Cappuzzo F (2020) ROS1-rearranged non-small-cell lung cancer is associated with a high rate of venous thromboembolism: analysis from a phase II, prospective, multicenter, two-arms trial (METROS). Clin Lung Cancer 21:15–20

    Article  PubMed  Google Scholar 

  58. Ng TL, Smith DE, Mushtaq R, Patil T, Dimou A, Yang S, Liu Q, Li X, Zhou C, Jones RT, Tu MM, Yan F, Bowman IA, Liu SV, Newkirk S, Bauml J, Doebele RC, Aisner DL, Gao D, Ren S, Camidge DR (2019) ROS1 gene rearrangements are associated with an elevated risk of peridiagnosis thromboembolic events. J Thorac Oncol : Off Publ Int Assoc Study Lung Cancer 14:596–605

    Article  CAS  Google Scholar 

  59. Ou SI, Zhu VW (2019) CNS metastasis in ROS1+ NSCLC: an urgent call to action, to understand, and to overcome. Lung cancer (Amsterdam, Netherlands) 130:201–207

    Article  PubMed  Google Scholar 

  60. Liu Y, Liu T, Li N, Wang T, Pu Y, Lin R (2019) Identification of a novel WNK1-ROS1 fusion in a lung adenocarcinoma sensitive to crizotinib. Lung cancer (Amsterdam, Netherlands) 129:92–94

    Article  PubMed  Google Scholar 

  61. Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, Riely GJ, Varella-Garcia M, Shapiro GI, Costa DB, Doebele RC, Le LP, Zheng Z, Tan W, Stephenson P, Shreeve SM, Tye LM, Christensen JG, Wilner KD, Clark JW, Iafrate AJ (2014) Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 371:1963–1971

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wu YL, Yang JC, Kim DW, Lu S, Zhou J, Seto T, Yang JJ, Yamamoto N, Ahn MJ, Takahashi T, Yamanaka T, Kemner A, Roychowdhury D, Paolini J, Usari T, Wilner KD, Goto K (2018) Phase II study of crizotinib in East Asian patients with ROS1-positive advanced non-small-cell lung cancer. J Clini Oncol : Off J Am Soc Clin Oncol 36:1405–1411

    Article  CAS  Google Scholar 

  63. Gainor JF, Tseng D, Yoda S, Dagogo-Jack I, Friboulet L, Lin JJ, Hubbeling HG, Dardaei L, Farago AF, Schultz KR, Ferris LA, Piotrowska Z, Hardwick J, Huang D, Mino-Kenudson M, Iafrate AJ, Hata AN, Yeap BY, Shaw AT (2017) Patterns of metastatic spread and mechanisms of resistance to crizotinib in ROS1-positive non-small-cell lung cancer. JCO precision oncology 2017

  64. Drilon A, Siena S, Dziadziuszko R, Barlesi F, Krebs MG, Shaw AT, de Braud F, Rolfo C, Ahn MJ, Wolf J, Seto T, Cho BC, Patel MR, Chiu CH, John T, Goto K, Karapetis CS, Arkenau HT, Kim SW, Ohe Y, Li YC, Chae YK, Chung CH, Otterson GA, Murakami H, Lin CC, Tan DSW, Prenen H, Riehl T, Chow-Maneval E, Simmons B, Cui N, Johnson A, Eng S, Wilson TR, Doebele RC (2020) Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1–2 trials. Lancet Oncol 21:261–270

    Article  CAS  PubMed  Google Scholar 

  65. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, Blakely CM, Seto T, Cho BC, Tosi D, Besse B, Chawla SP, Bazhenova L, Krauss JC, Chae YK, Barve M, Garrido-Laguna I, Liu SV, Conkling P, John T, Fakih M, Sigal D, Loong HH, Buchschacher GL Jr, Garrido P, Nieva J, Steuer C, Overbeck TR, Bowles DW, Fox E, Riehl T, Chow-Maneval E, Simmons B, Cui N, Johnson A, Eng S, Wilson TR, Demetri GD (2020) Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 21:271-282

  66. Johnson TW, Richardson PF, Bailey S, Brooun A, Burke BJ, Collins MR, Cui JJ, Deal JG, Deng YL, Dinh D, Engstrom LD, He M, Hoffman J, Hoffman RL, Huang Q, Kania RS, Kath JC, Lam H, Lam JL, Le PT, Lingardo L, Liu W, McTigue M, Palmer CL, Sach NW, Smeal T, Smith GL, Stewart AE, Timofeevski S, Zhu H, Zhu J, Zou HY, Edwards MP (2014) Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. J Med Chem 57:4720–4744

    Article  CAS  PubMed  Google Scholar 

  67. Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, Gainor JF, Johnson M, Dietrich J, James LP, Clancy JS, Chen J, Martini JF, Abbattista A, Solomon BJ (2017) Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol 18:1590–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shaw AT, Solomon BJ, Chiari R, Riely GJ, Besse B, Soo RA, Kao S, Lin CC, Bauer TM, Clancy JS, Thurm H, Martini JF, Peltz G, Abbattista A, Li S, Ou SI (2019) Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncol 20:1691–1701

    Article  CAS  PubMed  Google Scholar 

  69. Papin C, Denouel-Galy A, Laugier D, Calothy G, Eychène A (1998) Modulation of kinase activity and oncogenic properties by alternative splicing reveals a novel regulatory mechanism for B-Raf. J Biol Chem 273:24939–24947

    Article  CAS  PubMed  Google Scholar 

  70. Imyanitov EN, Iyevleva AG, Levchenko EV (2021) Molecular testing and targeted therapy for non-small cell lung cancer: current status and perspectives. Crit Rev Oncol Hematol 157:103194

    Article  PubMed  Google Scholar 

  71. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  CAS  PubMed  Google Scholar 

  72. Palanisamy N, Ateeq B, Kalyana-Sundaram S, Pflueger D, Ramnarayanan K, Shankar S, Han B, Cao Q, Cao X, Suleman K, Kumar-Sinha C, Dhanasekaran SM, Chen YB, Esgueva R, Banerjee S, LaFargue CJ, Siddiqui J, Demichelis F, Moeller P, Bismar TA, Kuefer R, Fullen DR, Johnson TM, Greenson JK, Giordano TJ, Tan P, Tomlins SA, Varambally S, Rubin MA, Maher CA, Chinnaiyan AM (2010) Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 16:793–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  74. Tan YH, Liu Y, Eu KW, Ang PW, Li WQ, Salto-Tellez M, Iacopetta B, Soong R (2008) Detection of BRAF V600E mutation by pyrosequencing. Pathology 40:295–298

    Article  CAS  PubMed  Google Scholar 

  75. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, Wolf J, Raje NS, Diamond EL, Hollebecque A, Gervais R, Elez-Fernandez ME, Italiano A, Hofheinz RD, Hidalgo M, Chan E, Schuler M, Lasserre SF, Makrutzki M, Sirzen F, Veronese ML, Tabernero J, Baselga J (2015) Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 373:726–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chacim S, Monjardino T, Cunha JL, Medeiros P, Redondo P, Bento MJ, Mariz JM (2022) Costs, effectiveness, and safety associated with Chimeric Antigen Receptor (CAR) T-cell therapy: results from a comprehensive cancer center. PLoS One 17:e0278950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gautschi O, Milia J, Cabarrou B, Bluthgen MV, Besse B, Smit EF, Wolf J, Peters S, Früh M, Koeberle D, Oulkhouir Y, Schuler M, Curioni-Fontecedro A, Huret B, Kerjouan M, Michels S, Pall G, Rothschild S, Schmid-Bindert G, Scheffler M, Veillon R, Wannesson L, Diebold J, Zalcman G, Filleron T, Mazières J (2015) Targeted therapy for patients with BRAF-mutant lung cancer: results from the European EURAF cohort. J Thorac Oncol : Off Publ Int Assoc Study Lung Cancer 10:1451–1457

    Article  CAS  Google Scholar 

  79. Planchard D, Kim TM, Mazieres J, Quoix E, Riely G, Barlesi F, Souquet PJ, Smit EF, Groen HJ, Kelly RJ, Cho BC, Socinski MA, Pandite L, Nase C, Ma B, D’Amelio A Jr, Mookerjee B, Curtis CM Jr, Johnson BE (2016) Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol 17;642-650

  80. Han J, Liu Y, Yang S, Wu X, Li H, Wang Q (2021) MEK inhibitors for the treatment of non-small cell lung cancer. J Hematol Oncol 14:1

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fischmann TO, Smith CK, Mayhood TW, Myers JE, Reichert P, Mannarino A, Carr D, Zhu H, Wong J, Yang RS, Le HV, Madison VS (2009) Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors. Biochemistry 48:2661–2674

    Article  CAS  PubMed  Google Scholar 

  82. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL (2020) ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 19:1997–2007

    PubMed  PubMed Central  Google Scholar 

  83. Hainsworth JD, Cebotaru CL, Kanarev V, Ciuleanu TE, Damyanov D, Stella P, Ganchev H, Pover G, Morris C, Tzekova V (2010) A phase II, open-label, randomized study to assess the efficacy and safety of AZD6244 (ARRY-142886) versus pemetrexed in patients with non-small cell lung cancer who have failed one or two prior chemotherapeutic regimens. J Thorac Oncol : Off Publ Int Assoc Study Lung Cancer 5:1630–1636

    Article  Google Scholar 

  84. Jänne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, Franke FA, Grinsted L, Zazulina V, Smith P, Smith I, Crinò L (2013) Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 14:38–47

    Article  PubMed  Google Scholar 

  85. Soria JC, Fülöp A, Maciel C, Fischer JR, Girotto G, Lago S, Smit E, Ostoros G, Eberhardt WEE, Lishkovska P, Lovick S, Mariani G, McKeown A, Kilgour E, Smith P, Bowen K, Kohlmann A, Carlile DJ, Jänne PA (2017) SELECT-2: a phase II, double-blind, randomized, placebo-controlled study to assess the efficacy of selumetinib plus docetaxel as a second-line treatment of patients with advanced or metastatic non-small-cell lung cancer. Ann Oncol : Off J Eur Soc Med Oncol 28:3028–3036

    Article  Google Scholar 

  86. Hellmann MD, Kim TW, Lee CB, Goh BC, Miller WH Jr, Oh DY, Jamal R, Chee CE, Chow LQM, Gainor JF, Desai J, Solomon BJ, Das Thakur M, Pitcher B, Foster P, Hernandez G, Wongchenko MJ, Cha E, Bang YJ, Siu LL, Bendell J (2019) Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Ann Oncol : Off J Eur Soc Med Oncol 30:1134–1142

  87. Oxnard GR, Yang JC, Yu H, Kim SW, Saka H, Horn L, Goto K, Ohe Y, Mann H, Thress KS, Frigault MM, Vishwanathan K, Ghiorghiu D, Ramalingam SS, Ahn MJ (2020) TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol : Off J Eur Soc Med Oncol 31:507–516

    Article  CAS  Google Scholar 

  88. Amoresano A, Incoronato M, Monti G, Pucci P, de Franciscis V, Cerchia L (2005) Direct interactions among Ret, GDNF and GFRalpha1 molecules reveal new insights into the assembly of a functional three-protein complex. Cell Signal 17:717–727

    Article  CAS  PubMed  Google Scholar 

  89. Li AY, McCusker MG, Russo A, Scilla KA, Gittens A, Arensmeyer K, Mehra R, Adamo V, Rolfo C (2019) RET fusions in solid tumors. Cancer Treat Rev 81:101911

    Article  PubMed  Google Scholar 

  90. Song Z, Yu X, Zhang Y (2016) Clinicopathologic characteristics, genetic variability and therapeutic options of RET rearrangements patients in lung adenocarcinoma. Lung cancer (Amsterdam, Netherlands) 101:16–21

    Article  PubMed  Google Scholar 

  91. Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, Luo X, Wang L, Li H, Zhang Y, Li F, Lu Y, Lu Q, Xu J, Garfield D, Shen L, Ji H, Pao W, Sun Y, Chen H (2012) RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol : Off J Am Soc Clin Oncol 30:4352–4359

    Article  CAS  Google Scholar 

  92. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, Orf J, You A, Laird AD, Engst S, Lee L, Lesch J, Chou YC, Joly AH (2011) Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 10:2298–2308

    Article  CAS  PubMed  Google Scholar 

  93. Wakelee HA, Gettinger S, Engelman J, Jänne PA, West H, Subramaniam DS, Leach J, Wax M, Yaron Y, Miles DR, Lara PN Jr (2017) A phase Ib/II study of cabozantinib (XL184) with or without erlotinib in patients with non-small cell lung cancer. Cancer Chemother Pharmacol 79:923-932

  94. Cheng Z, Li M, Dey R, Chen Y (2021) Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol 14:85

    Article  PubMed  PubMed Central  Google Scholar 

  95. Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R (2018) Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res 137:115–170

    Article  CAS  PubMed  Google Scholar 

  96. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48

    Article  CAS  PubMed  Google Scholar 

  97. Zhou J, Zhao WY, Ma X, Ju RJ, Li XY, Li N, Sun MG, Shi JF, Zhang CX, Lu WL (2013) The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 34:3626–3638

    Article  CAS  PubMed  Google Scholar 

  98. Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed Nanotechnol Biol Med 1:193–212

    Article  CAS  Google Scholar 

  99. Lee W-H, Loo C-Y, Traini D, Young PM (2015) Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges 10:481–489

  100. Borse VB, Konwar AN, Jayant RD, Patil PO (2020) Perspectives of characterization and bioconjugation of gold nanoparticles and their application in lateral flow immunosensing. Drug Deliv Transl Res 10:878–902

    Article  CAS  PubMed  Google Scholar 

  101. Dufort S, Bianchi A, Henry M, Lux F, Le Duc G, Josserand V, Louis C, Perriat P, Crémillieux Y, Tillement O, Coll JL (2015) Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small 11:215–221

    Article  CAS  PubMed  Google Scholar 

  102. Vangijzegem T, Stanicki D, Laurent S (2019) Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 16:69–78

    Article  CAS  PubMed  Google Scholar 

  103. Yang Z, Sun Z, Ren Y, Chen X, Zhang W, Zhu X, Mao Z, Shen J, Nie S (2019) Advances in nanomaterials for use in photothermal and photodynamic therapeutics (Review). Mol Med Rep 20:5–15

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pleskova S, Mikheeva E, Gornostaeva E (2018) Using of quantum dots in biology and medicine. Adv Exp Med Biol 1048:323–334

    Article  CAS  PubMed  Google Scholar 

  105. Ferreira Soares DC, Domingues SC, Viana DB, Tebaldi ML (2020) Polymer-hybrid nanoparticles: current advances in biomedical applications. Biomed Pharmacother = Biomedecine & Pharmacotherapie 131:110695

  106. Li H, Somiya M, Tatematsu K, Kuroda S (2020) Construction of a macrophage-targeting bio-nanocapsule-based nanocarrier. Methods Mol Biol (Clifton, NJ) 2059:299–313

    Article  CAS  Google Scholar 

  107. Liu Y, Xia Y, Smollar J, Mao W, Wan Y (2021) The roles of small extracellular vesicles in lung cancer: molecular pathology, mechanisms, diagnostics, and therapeutics. Biochimica et biophysica acta. Rev Cancer 1876:188539

  108. Pham TC, Jayasinghe MK, Pham TT, Yang Y, Wei L, Usman WM, Chen H, Pirisinu M, Gong J, Kim S, Peng B, Wang W, Chan C, Ma V, Nguyen NTH, Kappei D, Nguyen XH, Cho WC, Shi J, Le MTN (2021) Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery. J Extracellular Vesicles 10:e12057

    Article  CAS  Google Scholar 

  109. Xu K, Zhang C, Du T, Gabriel ANA, Wang X, Li X, Sun L, Wang N, Jiang X, Zhang Y (2021) Progress of exosomes in the diagnosis and treatment of lung cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 134:111111

  110. Gagliardi M (2017) Biomimetic and bioinspired nanoparticles for targeted drug delivery. Ther Deliv 8:289–299

    Article  CAS  PubMed  Google Scholar 

  111. Xia Q, Zhang Y, Li Z, Hou X, Feng N (2019) Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharmaceutica Sinica B 9:675–689

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gagliardi M, Bertero A, Bifone A (2017) Molecularly imprinted biodegradable nanoparticles. Sci Rep 7:40046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao Z, Ukidve A, Gao Y, Kim J (2019) Mitragotri, S. Erythrocyte leveraged chemotherapy (ELeCt): nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci Adv 5:eaax9250.

  114. Gao L, Wang H, Nan L, Peng T, Sun L, Zhou J, Xiao Y, Wang J, Sun J, Lu W, Zhang L, Yan Z, Yu L, Wang Y (2017) Erythrocyte membrane-wrapped pH sensitive polymeric nanoparticles for non-small cell lung cancer therapy. Bioconjug Chem 28:2591–2598

    Article  CAS  PubMed  Google Scholar 

  115. Al-Sayadi GMH, Verma A, Choudhary Y, Sandal P, Patel P, Singh D, Gupta GD, Kurmi BD (2022) Solid lipid nanoparticles (slns): advancements in modification strategies toward drug delivery vehicle. Pharm Nanotechnol. https://doi.org/10.2174/2211738511666221026163303

    Article  Google Scholar 

  116. Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK (2020) Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat 30:179–194

    Article  CAS  PubMed  Google Scholar 

  117. Sahu PK, Mishra DK, Jain N, Rajoriya V, Jain AK (2015) Mannosylated solid lipid nanoparticles for lung-targeted delivery of Paclitaxel. Drug Dev Ind Pharm 41:640–649

    Article  CAS  PubMed  Google Scholar 

  118. Ahmed MM, Fatima F, Anwer MK, Aldawsari MF, Alsaidan YSM, Alfaiz SA, Haque A, Az A, Alhazzani K (2020) Development and characterization of brigatinib loaded solid lipid nanoparticles: in-vitro cytotoxicity against human carcinoma A549 lung cell lines. Chem Phys Lipid 233:105003

    Article  CAS  Google Scholar 

  119. Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y (2020) Liposomes: advancements and innovation in the manufacturing process. Adv Drug Deliv Rev 154–155:102–122

    Article  PubMed  Google Scholar 

  120. Madni A, Batool A, Noreen S, Maqbool I, Rehman F, Kashif PM, Tahir N, Raza A (2017) Novel nanoparticulate systems for lung cancer therapy: an updated review. J Drug Target 25:499–512

    Article  CAS  PubMed  Google Scholar 

  121. de Souza MGF, de Jesus Guedes FN, Tebaldi ML, do Nascimento Alencar É, Amaral-Machado L, do Egito EST, de Barros ALB, Soares DCF (2021) Ferri-liposomes: preformulation and selective cytotoxicity against A549 lung cancer cells. Pharmaceutics 13

  122. Li N, Mai Y, Liu Q, Gou G, Yang J (2021) Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance. Drug Deliv Transl Res 11:131–141

    Article  CAS  PubMed  Google Scholar 

  123. Ak G (2021) Covalently coupling doxorubicin to polymeric nanoparticles as potential inhaler therapy: in vitro studies. Pharm Dev Technol 26:890–898

    Article  CAS  PubMed  Google Scholar 

  124. Shukla SK, Kulkarni NS, Farrales P, Kanabar DD, Parvathaneni V, Kunda NK, Muth A, Gupta V (2020) Sorafenib loaded inhalable polymeric nanocarriers against non-small cell lung cancer. Pharm Res 37:67

    Article  CAS  PubMed  Google Scholar 

  125. Jiang ZM, Dai SP, Xu YQ, Li T, Xie J, Li C, Zhang ZH (2015) Crizotinib-loaded polymeric nanoparticles in lung cancer chemotherapy. Med Oncol (Northwood, London, England) 32:193

    Article  Google Scholar 

  126. Mottaghitalab F, Farokhi M, Fatahi Y, Atyabi F, Dinarvand R (2019) New insights into designing hybrid nanoparticles for lung cancer: diagnosis and treatment. J Control Release : Off J Control Release Soc 295:250–267

    Article  CAS  Google Scholar 

  127. Pramual S, Lirdprapamongkol K, Jouan-Hureaux V, Barberi-Heyob M, Frochot C, Svasti J, Niamsiri N (2020) Overcoming the diverse mechanisms of multidrug resistance in lung cancer cells by photodynamic therapy using pTHPP-loaded PLGA-lipid hybrid nanoparticles. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 149:218–228.

  128. Zhou J, Sun J, Chen H, Peng Q (2018) Promoted delivery of salinomycin sodium to lung cancer cells by dual targeting PLGA hybrid nanoparticles. Int J Oncol 53:1289–1300

    CAS  PubMed  Google Scholar 

  129. Singh P, Pandit S, Mokkapati V, Garg A, Ravikumar V, Mijakovic I (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19

  130. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angewandte Chemie (International ed. in English) 49:3280–3294

  131. Thambiraj S, Shruthi S, Vijayalakshmi R, Ravi Shankaran D (2019) Evaluation of cytotoxic activity of docetaxel loaded gold nanoparticles for lung cancer drug delivery. Cancer Treat Res Commun 21:100157

    Article  CAS  PubMed  Google Scholar 

  132. Rajeshkumar S (2016) Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 14:195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Barbasz A, Oćwieja M, Piergies N, Duraczyńska D, Nowak A (2021) Antioxidant-modulated cytotoxicity of silver nanoparticles. J Appl Toxicol : JAT 41:1863–1878

    Article  CAS  PubMed  Google Scholar 

  134. Fayez H, El-Motaleb MA, Selim AA (2020) Synergistic cytotoxicity of shikonin-silver nanoparticles as an opportunity for lung cancer. J Labelled Compd Radiopharm 63:25–32

    Article  CAS  Google Scholar 

  135. Chang JE, Cho HJ, Jheon S (2016) Anticancer efficacy of photodynamic therapy with lung cancer-targeted nanoparticles. J Vis Exp 118:54865

    Google Scholar 

  136. Crous A, Abrahamse H (2020) Effective gold nanoparticle-antibody-mediated drug delivery for photodynamic therapy of lung cancer stem cells. Int J Mol Sci 21:3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu B, Qiao G, Han Y, Shen E, Alfranca G, Tan H, Wang L, Pan S, Ma L, Xiong W, Liu Y, Cui D (2020) Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy. Acta Biomater 117:361–373

    Article  CAS  PubMed  Google Scholar 

  138. Zhang T, Bao J, Zhang M, Ge Y, Wei J, Li Y, Wang W, Li M, Jin Y (2020) Chemo-photodynamic therapy by pulmonary delivery of gefitinib nanoparticles and 5-aminolevulinic acid for treatment of primary lung cancer of rats. Photodiagn Photodyn Ther 31:101807

    Article  CAS  Google Scholar 

  139. Luo G, Long J, Zhang B, Liu C, Ji S, Xu J, Yu X, Ni Q (2012) Quantum dots in cancer therapy. Expert Opin Drug Deliv 9:47–58

    Article  CAS  PubMed  Google Scholar 

  140. Liu J, Shi X, Zhang R, Zhang M, He J, Chen J, Wang Z, Wang Q (2021) CoFe(2)O(4)-quantum dots for synergistic photothermal/photodynamic therapy of non-small-cell lung cancer via triggering apoptosis by regulating PI3K/AKT pathway. Nanoscale Res Lett 16:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Negri V, Pacheco-Torres J, Calle D, López-Larrubia P (2020) Carbon nanotubes in biomedicine. Top Curr Chem (Cham) 378:15

    Article  CAS  PubMed  Google Scholar 

  142. Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    Article  PubMed  Google Scholar 

  143. Singh RP, Sharma G, Sonali, Singh S, Patne SCU, Pandey BL, Koch B, Muthu MS (2016) Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Mater Sci Eng. C, Mate Biol Appl 67:313–325

  144. Yu B, Tan L, Zheng R, Tan H, Zheng L (2016) Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes. Mater Sci Eng. C, Mater Biol Appl 68:579–584

    Article  CAS  PubMed  Google Scholar 

  145. Ma D, Wang G, Lu J, Zeng X, Cheng Y, Zhang Z, Lin N, Chen Q (2023) Multifunctional nano MOF drug delivery platform in combination therapy. Eur J Med Chem 261:115884

    Article  CAS  PubMed  Google Scholar 

  146. Giliopoulos D, Zamboulis A, Giannakoudakis D, Bikiaris D, Triantafyllidis K (2020) Polymer/metal organic framework (MOF) nanocomposites for biomedical applications. Molecules 25:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Hu Y, Peng D, Liu Z, Liu Y (2020) Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 230:119619

    Article  CAS  PubMed  Google Scholar 

  148. Raju P, Balakrishnan K, Mishra M, Thirumurugan R, Suganthy N (2022) Fabrication of pH responsive FU@Eu-MOF nanoscale metal organic frameworks for lung cancer therapy. J Drug Deliv Sci Technol 70:103223

    Article  CAS  Google Scholar 

  149. Jarju JJ, Lavender AM, Espiña B, Romero V, Salonen LM (2020) Covalent organic framework composites: synthesis and analytical applications. Molecules 25:5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhou LL, Guan Q, Zhou W, Kan JL, Teng K, Hu M, Dong YB (2023) A multifunctional covalent organic framework nanozyme for promoting ferroptotic radiotherapy against esophageal cancer. ACS Nano 17:20445–20461

    Article  CAS  PubMed  Google Scholar 

  151. Meng T, Wang X, Jiang S, Chen SR, Zhou S, Zhu Y, Wu J, Hu D, Yan Y, Zhang G (2023) Delivery of small-molecule drugs and protein drugs by injectable acid-responsive self-assembled COF hydrogels for combinatorial lung cancer treatment. ACS Appl Mater Interfaces 15:42354–42368

    Article  CAS  PubMed  Google Scholar 

  152. Presutti D, Agarwal T, Zarepour A, Celikkin N, Hooshmand S, Nayak C, Ghomi M, Zarrabi A, Costantini M, Behera B, Maiti TK (2022) Transition metal dichalcogenides (TMDC)-based nanozymes for biosensing and therapeutic applications. Materials 15:337

  153. Sangolkar AA, Pooja, Pawar R (2023) Structure, stability, and electronic and optical properties of TMDC-coinage metal composites: vertical atomically thin self-assembly of Au clusters. Phys Chem Chem Phys 25:4177–4192

  154. Zhou R, Zhu S, Gong L, Fu Y, Gu Z, Zhao Y (2019) Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy. J Mater Chem B 7:2588–2607

    Article  CAS  PubMed  Google Scholar 

  155. Iravani S, Varma RS (2022) MXenes in cancer nanotheranostics. Nanomaterials 12:3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Singh B, Bahadur R, Maske P, Gandhi M, Singh D, Srivastava R (2023) Preclinical safety assessment of red emissive gold nanocluster conjugated crumpled MXene nanosheets: a dynamic duo for image-guided photothermal therapy. Nanoscale 15:2932–2947

    Article  CAS  PubMed  Google Scholar 

  157. Seidi F, ArabiShamsabadi A, DadashiFirouzjaei M, Elliott M, Saeb MR, Huang Y, Li C, Xiao H, Anasori B (2023) MXenes antibacterial properties and applications: a review and perspective. Small 19:e2206716

    Article  PubMed  Google Scholar 

  158. Bahadur R, Singh B, Rai D, Srivastava R (2023) Influence of PEGylation on WS(2) nanosheets and its application in photothermal therapy. ACS Appl Bio Mater 6:4740–4748

    Article  CAS  PubMed  Google Scholar 

  159. Jastrzębska AM, Szuplewska A, Wojciechowski T, Chudy M, Ziemkowska W, Chlubny L, Rozmysłowska A, Olszyna A (2017) In vitro studies on cytotoxicity of delaminated Ti(3)C(2) MXene. J Hazard Mater 339:1–8

    Article  PubMed  Google Scholar 

  160. Karpuz M, Silindir-Gunay M, Ozer AY, Ozturk SC, Yanik H, Tuncel M, Aydin C, Esendagli G (2021) Diagnostic and therapeutic evaluation of folate-targeted paclitaxel and vinorelbine encapsulating theranostic liposomes for non-small cell lung cancer. Eur J Pharma Sci 156:105576

  161. Tang J, Zheng F, Zhao J, Zhao J (2020) Self-assembled multifunctional nanotheranostics loading GEM for targeted lung cancer therapy. Mater Sci Eng C, Mater for Biol Appl 112:110786

    Article  CAS  Google Scholar 

Download references

Funding

BDK and GDG are thankful to the Indian Council of Medical Research (ICMR), New Delhi, India, for providing financial assistance in the form of ICMR- Adhoc Research Project. (File No.: 67/05/2022-DDI/BMS; RFC No.: BMS/Adhoc/121/2022–23; IRIS ID: 2021–10997).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Preeti Patel or Balak Das Kurmi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, L., Kumari, L., Sharma, Y. et al. Recent nanotechnological aspects and molecular targeting strategies for lung cancer therapy. J Nanopart Res 26, 99 (2024). https://doi.org/10.1007/s11051-024-06008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06008-0

Keywords

Navigation