Skip to main content
Log in

Non-small-cell lung cancer harbouring mutations in the EGFR kinase domain

  • Educational Series
  • Molecular and Cellular Biology of Cancer
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Key “driver” mutations have been discovered in specific subgroups of non-small-cell lung cancer (NSCLC) patients. Activating mutations in the form of deletions in exon 19 (del 19) or the missense mutation L858R in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) predict outcome to EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib. Pooled data from several phase II studies show that gefitinib and erlotinib induce responses in over 70% of NSCLC patients harbouring EGFR mutations, with progression-free survival (PFS) ranging from 9 to 13 months and median survival of around 23 months. Two studies in Caucasian and Asian patients have confirmed that these subgroups of patients attain response rates of 70% with erlotinib and gefitinib, including complete responses, PFS up to 14 months and median survival up to 27 months. These landmark outcomes have been accompanied by new challenges: the additional role of chemotherapy and the management of tumours with the secondary T790M mutation that confers resistance to EGFR TKIs. Mechanisms of resistance to reversible EGFR TKIs should be further clarified and could be related to modifications in DNA repair. The presence of double mutations (T790M plus either L858R or del 19) at the time of diagnosis could be much more frequent than originally thought. The sensitivity to EGFR TKIs could be greatly influenced by the expression of genes involved in the repair of DNA double-strand breaks by homologous recombination and non-homologous end joining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gazdar AF (2009) Personalized medicine and inhibition of EGFR signaling in lung cancer. N Engl J Med 361:1018–1020

    Article  CAS  PubMed  Google Scholar 

  2. Sordella R, Bell DW, Haber DA, Settleman J (2004) Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305:1163–1167

    Article  CAS  PubMed  Google Scholar 

  3. Jackman DM, Miller VA, Cioffredi LA et al (2009) Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clin Cancer Res 15:5267–5273

    Article  CAS  PubMed  Google Scholar 

  4. Sequist LV, Martins RG, Spigel D et al (2008) First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol 26:2442–2449

    Article  CAS  PubMed  Google Scholar 

  5. Riely GJ, Pao W, Pham D et al (2006) Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res 12:839–844

    Article  CAS  PubMed  Google Scholar 

  6. Gandhi J, Zhang J, Xie Y et al (2009) Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines. PLoS ONE 4:e4576

    Article  PubMed  Google Scholar 

  7. Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  CAS  PubMed  Google Scholar 

  8. Rosell R, Moran T, Queralt C et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361:958–967

    Article  CAS  PubMed  Google Scholar 

  9. Seike M, Goto A, Okano T et al (2009) MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A 106:12085–12090

    Article  CAS  PubMed  Google Scholar 

  10. Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    Article  CAS  PubMed  Google Scholar 

  11. Kuang Y, Rogers A, Yeap BY et al (2009) Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non-small cell lung cancer. Clin Cancer Res 15:2630–2636

    Article  CAS  PubMed  Google Scholar 

  12. Rosell R, Viteri S, Molina MA et al (2009) Epidermal growth factor receptor tyrosine kinase inhibitors as first-line treatment in advanced nonsmall-cell lung cancer. Curr Opin Oncol (in press)

  13. Nguyen KS, Kobayashi S, Costa DB (2009) Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway. Clin Lung Cancer 10:281–289

    Article  CAS  PubMed  Google Scholar 

  14. Zhou W, Ercan D, Chen L et al (2009) Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 462:1070–1074

    Article  CAS  PubMed  Google Scholar 

  15. Maheswaran S, Sequist LV, Nagrath S et al (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359:366–377

    Article  CAS  PubMed  Google Scholar 

  16. Inukai M, Toyooka S, Ito S et al (2006) Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res 66:7854–7858

    Article  CAS  PubMed  Google Scholar 

  17. Dierks C, Beigi R, Guo GR et al (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14:238–249

    Article  CAS  PubMed  Google Scholar 

  18. Zhao C, Chen A, Jamieson CH et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458:776–779

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi S, Shimamura T, Monti S et al (2006) Transcriptional profiling identifies cyclin D1 as a critical downstream effector of mutant epidermal growth factor receptor signaling. Cancer Res 66:11389–11398

    Article  CAS  PubMed  Google Scholar 

  20. Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743–2748

    Article  CAS  PubMed  Google Scholar 

  21. Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320:97–100

    Article  CAS  PubMed  Google Scholar 

  22. West JA, Viswanathan SR, Yabuuchi A et al (2009) A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature 460:909–913

    CAS  PubMed  Google Scholar 

  23. Viswanathan SR, Powers JT, Einhorn W et al (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41:843–848

    Article  CAS  PubMed  Google Scholar 

  24. Mendell JT (2009) Tumors line up for a letdown. Nat Genet 41:768–769

    Article  CAS  PubMed  Google Scholar 

  25. Johnson CD, Esquela-Kerscher A, Stefani G et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722

    Article  CAS  PubMed  Google Scholar 

  26. Kumar MS, Erkeland SJ, Pester RE et al (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 105:3903–3908

    Article  CAS  PubMed  Google Scholar 

  27. Cortez MA, Calin GA (2009) MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Exp Opin Biol Ther 9:703–711

    Article  CAS  Google Scholar 

  28. Meyer B, Krisponeit D, Junghanss C et al (2007) Quantitative expression analysis in peripheral blood of patients with chronic myeloid leukaemia: correlation between HMGA2 expression and white blood cell count. Leuk Lymphoma 48:2008–2013

    Article  CAS  PubMed  Google Scholar 

  29. Langelotz C, Schmid P, Jakob C et al (2003) Expression of high-mobility-group-protein HMGI-C mRNA in the peripheral blood is an independent poor prognostic indicator for survival in metastatic breast cancer. Br J Cancer 88:1406–1410

    Article  CAS  PubMed  Google Scholar 

  30. Shell S, Park SM, Radjabi AR et al (2007) Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A 104:11400–11405

    Article  CAS  PubMed  Google Scholar 

  31. Wu X, Piper-Hunter MG, Crawford M et al (2009) MicroRNAs in the pathogenesis of Lung Cancer. J Thorac Oncol 4:1028–1034

    Article  PubMed  Google Scholar 

  32. Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  CAS  PubMed  Google Scholar 

  33. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  34. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  35. Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  CAS  PubMed  Google Scholar 

  36. Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101:13306–13311

    Article  CAS  PubMed  Google Scholar 

  37. Taron M, Ichinose Y, Rosell R et al (2005) Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas. Clin Cancer Res 11:5878–5885

    Article  CAS  PubMed  Google Scholar 

  38. Smouse JH, Cibas ES, Janne PA et al (2009) EGFR mutations are detected comparably in cytologic and surgical pathology specimens of nonsmall cell lung cancer. Cancer Cytopathol 117:67–72

    Article  PubMed  Google Scholar 

  39. Molina-Vila MA, Bertran-Alamillo J, Reguart N et al (2008) A sensitive method for detecting EGFR mutations in non-small cell lung cancer samples with few tumor cells. J Thorac Oncol 3:1224–1235

    Article  PubMed  Google Scholar 

  40. Morita S, Okamoto I, Kobayashi K et al (2009) Combined survival analysis of prospective clinical trials of gefitinib for non-small cell lung cancer with EGFR mutations. Clin Cancer Res 15:4493–4498

    Article  CAS  PubMed  Google Scholar 

  41. Miyazawa H, Tanaka T, Nagai Y et al (2008) Peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp-based detection test for gefitinib-refractory T790M epidermal growth factor receptor mutation. Cancer Sci 99:595–600

    Article  CAS  PubMed  Google Scholar 

  42. Yu J, Kane S, Wu J et al (2009) Mutation-specific antibodies for the detection of EGFR mutations in non-small-cell lung cancer. Clin Cancer Res 15:3023–3028

    Article  CAS  PubMed  Google Scholar 

  43. Motoi N, Szoke J, Riely GJ et al (2008) Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. Am J Surg Pathol 32:810–827

    Article  PubMed  Google Scholar 

  44. De Oliveira Duarte Achcar R, Nikiforova MN, Yousem SA (2009) Micropapillary lung adenocarcinoma: EGFR, K-ras, and BRAF mutational profile. Am J Clin Pathol 131:694–700

    Article  PubMed  Google Scholar 

  45. Gow CH, Chang YL, Hsu YC et al (2009) Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer. Ann Oncol 20:696–702

    Article  PubMed  Google Scholar 

  46. Bai H, Mao L, Wang HS et al (2009) Epidermal growth factor receptor mutations in plasma DNA samples predict tumor response in Chinese patients with stages IIIB to IV non-small-cell lung cancer. J Clin Oncol 27:2653–2659

    Article  CAS  PubMed  Google Scholar 

  47. Yung TK, Chan KC, Mok TS et al (2009) Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res 15:2076–2084

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Rosell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosell, R., Morán, T., Carcereny, E. et al. Non-small-cell lung cancer harbouring mutations in the EGFR kinase domain. Clin Transl Oncol 12, 75–80 (2010). https://doi.org/10.1007/S12094-010-0473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/S12094-010-0473-0

Keywords

Navigation