Skip to main content

Using of Quantum Dots in Biology and Medicine

  • Chapter
  • First Online:
Cellular and Molecular Toxicology of Nanoparticles

Abstract

Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yashin KD, Osipovich VS, Pitsuk SE (2007) Structure of the nanocrystals of cadmium selenit received by the method of colloid chemistry for the use in medical diagnostics. Rep BGUIR 3:74–79

    Google Scholar 

  2. Guo Z, Tan L (2009) Fundamentals and applications of nanomaterials. Artech House, London, pp 1–249

    Google Scholar 

  3. Musihin SF, Alexandrova OA, Luchinin VV et al (2012) Semiconductor colloidal nanoparticles in biology and medicine. Fund Biomed Eng 5–6:47–55

    Google Scholar 

  4. Rempel SV, Razvodov AA, Nebogatikov MC et al (2013) Sizes and fluorescence of quantum dots of cadmium sulfide. Solid State Phys 55(3):567–571

    Article  Google Scholar 

  5. Zhu JJ, Li JJ, Huang HP et al (2013) Quantum dots for DNA biosensing. Springer Briefs Mol Sci. https://doi.org/10.1007/978-3-642-44910-9-2

  6. Samohvalov PS, Artemyev MV, Nabiev IR (2013) Modern methods of luminescent semiconductor nanocrystals synthesis for biomedical usage. Russ Nanotechnol 8(5–6):119–129

    Google Scholar 

  7. Speranskaya ES, GoryachevaYu I (2013) Fluorescent quantum dots: synthesis, modification and use in the immunoanalysis. Russ Nanotechnol 8(11–12):7–17

    Google Scholar 

  8. Oleynikov VA, Sukhanova AV, Nabiyev IR (2007) Fluorescent semiconductor nanocrystals in biology and medicine. Russ Nanotechnol 2(1–2):160–173

    Google Scholar 

  9. Gao X, Chan WCW, Nie S (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7:532–537

    Article  CAS  PubMed  Google Scholar 

  10. Duran N, Silveira CP, Duran M et al (2015) Silver nanoparticle protein corona and toxicity: mini-review. J Nanobiotechnol 13:1–17

    Article  Google Scholar 

  11. Casals E, Pfaller T, Duschl A et al (2011) Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small 7:3479–3486

    Article  CAS  PubMed  Google Scholar 

  12. Kairdolf BA, Smith AM, Stokes TH et al (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 6(1):143–162

    Article  CAS  Google Scholar 

  13. Belyaeva TN, Salova AV, Leonteva EA et al (2009) Inappropriate quantum points in vital confocal microscopic examinations of cells. Tsitologiia 51:838–848

    Google Scholar 

  14. Lidke DS, Nagy P, Heintzmann R et al (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22(2):198–203

    Article  CAS  PubMed  Google Scholar 

  15. Pleskova SN, Balalayev IV, Gushchina YY et al (2009) Distinctions in functional activity of neutrophilic granulocytes in reactions with semiconductor quantum dots. Morphology 3:47–49

    Google Scholar 

  16. Crane JM, Haggie PM, Verkman AS (2009) Quantum dot single molecule tracking reveals a wide range of diffusive motions of membrane transport proteins. Proc SPIE 7489. https://doi.org/10.1117/12.816900

  17. Hanaki K, Momo A, Oku T et al (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302:496–501

    Article  CAS  PubMed  Google Scholar 

  18. Lim YT, Kim S, Nakayama A et al (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2(1):50–64

    Article  CAS  PubMed  Google Scholar 

  19. Wu X, Liu H, Liu J et al (2002) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Article  PubMed  Google Scholar 

  20. Rhyner MN, Smith AM, Gao XH et al (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1:209–217

    Article  CAS  PubMed  Google Scholar 

  21. Xing Y, Chaudry Q, Shen C et al (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2:1152–1165

    Article  CAS  PubMed  Google Scholar 

  22. Kim S, Lim YT, Soltesz EG et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Article  CAS  PubMed  Google Scholar 

  23. Gao X, Cui Y, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  PubMed  Google Scholar 

  24. Cai W, Shin DW, Chen K et al (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676

    Article  CAS  PubMed  Google Scholar 

  25. Akerman ME, Chan WC, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99:12617–12621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu X, Chen L, Li K et al (2007) Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomed Opt 12(1):014008

    Article  PubMed  Google Scholar 

  27. Zdobnova TA, Lebedenko EN, Deev SM (2011) Quantum dots for molecular diagnostics of tumors. Acta Nat 3(8):30–50

    Google Scholar 

  28. Tada H, Higuchi H, Wanatabe TM et al (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67:1138–1144

    Article  CAS  PubMed  Google Scholar 

  29. Smith AM, Dave S, Nie S et al (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6(2):231–244

    Article  CAS  PubMed  Google Scholar 

  30. Parak WJ, Boudreau R, Le Gros M et al (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14:882–885

    Article  CAS  Google Scholar 

  31. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Wang F, Li F et al (2016) Multifunctional poly(curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells. J Mater Chem 4:2954–2962

    Article  CAS  Google Scholar 

  33. Bagalkot V, Zhang L, Levy-Nissenbaum E et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070

    Article  CAS  PubMed  Google Scholar 

  34. Samia ACS, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125(51):15736–15737

    Article  CAS  PubMed  Google Scholar 

  35. Bakalova R, Ohba H, Zhelev Z et al (2004) Quantum dots as photosensitizers? Nat Biotechnol 22(11):1360–1361

    Article  CAS  PubMed  Google Scholar 

  36. Juzenas P, Chen W, Sun YP et al (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60:1600–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi AO, Brown SE, Szyf M et al (2008) Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med 86:291–302

    Article  CAS  PubMed  Google Scholar 

  38. Shlyakhto EV (ed) (2009) Nanotechnologies in biology and medicine. Publishing House, St. Petersburg

    Google Scholar 

  39. Kaji N, Tokeshi M, Baba Y (2007) Quantum dots for single bio-molecule imaging. Anal Sci 23:21–24

    Article  PubMed  Google Scholar 

  40. Hohng S, Ha T (2004) Near-complete suppression of quantum dot blinking in ambient conditions. J Am Chem Soc 126:1324–1325

    Article  CAS  PubMed  Google Scholar 

  41. Chashchin GV, Ponomarev VO, Nosov SV et al (2011) Prospect of use of artificial fluorophor (quantum dots) in ophthalmology. Bull Reg Pub Inst 14:394–396

    Google Scholar 

  42. Chashchin GV, Ponomarev VO, Nosov SV (2012) New inorganic fluorophor and the photosensitive retinal-containing proteins as a basis of element base for quantum nanosurgery of the eye retina. Bull Reg Pub Inst 12:225–228

    Google Scholar 

  43. Nel A, Xia T, Madler L (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  44. Medina C, Santos-Martinez MJ, Radomski A et al (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taranova NA, Berlina AN, Zherdeev AV et al (2012) Quantum dota as a marker in immunochromatographic diagnostic test systems. Nanotechnol Health Protect 4:44–47

    Google Scholar 

  46. Ding SG, Chen JX, Jiang HY et al (2006) Application of quantum dot-antibody conjugates for detection of sulfamethazine residue in chicken muscle tissue. J Agric Food Chem 54:6139–6142

    Article  CAS  PubMed  Google Scholar 

  47. Chen YP, Ning BA, Liu N et al (2010) A rapid and sensitive fluoroimmunoassay based on quantum dot for the detection of chlorpyrifos residue in drinking water. J Environ Sci Health B 45:508–515

    Article  CAS  PubMed  Google Scholar 

  48. Tully E, Hearty S, Leonard P et al (2006) The development of rapid fluorescence-based immunoassays, using quantum dot-labeled antibodies for the detection of Listeria monocytogenes cell surface proteins. Int J Biol Macromol 39:127–134

    Article  CAS  PubMed  Google Scholar 

  49. Wang XL, Tao GH, Meng YH (2009) A novel CdSe/CdS quantum dot-based competitive fluoroimmunoassay for the detection of clenbuterol residue in pig urine using magnetic core/shell Fe3O4/Au nanoparticles as a solid carrier. Anal Sci 25:1409–1413

    Article  PubMed  Google Scholar 

  50. Trapiella-Alfonso L, Costa-Fernandez JM, Pereiro R et al (2011) Development of a quantum dot-based fluorescent immunoassay for progesterone determination in bovine milk. Biosens Bioelectron 26:4753–4759

    Article  CAS  PubMed  Google Scholar 

  51. Korzhevsky E, Kirik OV, Gilyarov AV et al (2010) Use of semiconductor nanocrystals (quantum dots) in immunocytochemistry studies. Morphology 3:71–74

    Google Scholar 

  52. Oleynikov VA (2011) Semiconductor fluorescent nanocrystals (quantum dots) in protein biochips. Bioorg Chem 37(2):171–189

    Google Scholar 

  53. Rejman J, Oberle V, Zuhorn IS et al (2004) Size-dependent internalization of particles via pathways of clatrin-and caveolae-mediated endocytosis. Biochem J 377:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nabiev I, Mitchell S, Davies A et al (2007) Non functionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett 7:3452–3461

    Article  CAS  PubMed  Google Scholar 

  56. Lovrić J, Bazzi HS, Cuie Y et al (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385

    Article  PubMed  Google Scholar 

  57. Jiang W, Kim BYS, Rutka JT et al (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Biotechnol 3:145–150

    CAS  Google Scholar 

  58. Shan Y, Hao X, Shang X et al (2011) Recording force events of single quantum-dot endocytosis. Chem Commun 47:3377–3379

    Article  CAS  Google Scholar 

  59. Hoshino A, Fujioka K, Oku T et al (2004) Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 48:985–994

    Article  CAS  PubMed  Google Scholar 

  60. Jaiswal JK, Mattoussi H, Mauro JM et al (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  CAS  PubMed  Google Scholar 

  61. Harush-Frenkel O, Debotton N, Benita S et al (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353:26–32

    Article  CAS  PubMed  Google Scholar 

  62. Khan JA, Pillai B, Das TK et al (2007) Molecular effects of uptake of gold nanoparticles in Hela cells. Chem Biol Chem 8:1237–1240

    Article  CAS  Google Scholar 

  63. Xie J, Xu C, Kohler N et al (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19:3163–3166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation, project â„– 16-14-10179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Pleskova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pleskova, S., Mikheeva, E., Gornostaeva, E. (2018). Using of Quantum Dots in Biology and Medicine. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_19

Download citation

Publish with us

Policies and ethics