Skip to main content
Log in

An enhanced cylindrical contact force model

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The penalty formulations that describe the contact forces between different bodies of a mechanical system use the penetration as a representation of the local deformation. The dynamic analysis of the system is conducted assuming explicit or implicit relations between contact force and penetration, dependent on the geometries and material properties of the contacting points. Most of the cylindrical contact force models are based on the Hertz pressure distribution, exhibiting the same restrictions of the Hertz elastic contact theory, which prevent them from being used with conformal contact conditions often observed for low clearances. Furthermore, the existing cylindrical contact models represent the contact force as an implicit function of the penetration with logarithmic expressions, which pose some limitations in their use. We propose an alternative analytical cylindrical contact force model that describes the contact force as an explicit function of the penetration. The new enhanced cylindrical contact force model is based on the Johnson contact model and complementary finite element analysis valid for internal and external cylindrical contact. We show that, within the domain of validity of the Johnson contact force model, the forces predicted with the proposed model are well correlated with reference models, actually expanding their application range. The performance of the proposed model is demonstrated with the analysis of a multibody slider-crank mechanism in which one of the joints exhibits mechanical clearances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Flores, P., Ambrósio, J., Pimenta, C.J.C., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies. Springer, Berlin (2008)

    Google Scholar 

  2. Flores, P., Leine, R., Glocker, R.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010)

    Article  MathSciNet  Google Scholar 

  3. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  4. Zhang, H., Brogliato, B., Liu, C.: Dynamics of planar rocking-blocks with Coulomb friction and unilateral constraints: comparisons between experimental and numerical data. Multibody Syst. Dyn. 32(1), 1–26 (2014). doi:10.1007/s1044-013-9356-9

    Article  MATH  MathSciNet  Google Scholar 

  5. Zhuang, F., Wang, Q.: Modeling and simulation of the nonsmooth planar rigid multibody systems with frictional translational joints. Multibody Syst. Dyn. 29(4), 403–423 (2013)

    MathSciNet  Google Scholar 

  6. Xu, L.-X., Li, Y.-G.: Modeling of a deep-groove ball bearing with waviness defects in planar multibody system. Multibody Syst. Dyn. 33(3), 229–258 (2015). doi:10.1007/s1044-014-9413-z

    Article  MathSciNet  Google Scholar 

  7. Pedersen, S.L., Hansen, J.M., Ambrósio, J.: A roller chain drive model including contact with guide-bars. Multibody Syst. Dyn. 12, 285–301 (2004)

    Article  MATH  Google Scholar 

  8. Lankarani, H.M.: A Poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematic chains. J. Mech. Des. 122, 489–497 (2000)

    Article  Google Scholar 

  9. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)

    Article  MATH  Google Scholar 

  10. Haines, R.S.: Survey: 2-dimensional motion and impact at revolute joints. Mech. Mach. Theory 15, 361–370 (1980)

    Article  Google Scholar 

  11. Hippmann, G., Arnold, M., Schittenhelm, M.: Efficient simulation of bush and roller chain drives. In: Goicolea, J.M., Cuadrado, J., García Orden, J.C. (eds.) Proceedings of the Multibody Dynamics 2005, ECCOMAS Thematic Conference, Madrid, Spain (2005)

    Google Scholar 

  12. Gummer, A., Sauer, B.: Modeling planar slider-crank mechanisms with clearance joints in RecurDyn. Multibody Syst. Dyn. 31(2), 127–145 (2014)

    Article  Google Scholar 

  13. Flores, P., Ambrósio, J., Claro, J.C.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004)

    Article  MATH  Google Scholar 

  14. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hertz, H.: On the contact of solids-on the contact of rigid elastic solids and on hardness. In: Miscellaneous Papers, pp. 146–183. Macmillan and Co., London (1896). (Translated by D.E. Jones and G.A Schott)

    Google Scholar 

  16. Johnson, K.L.: One hundred years of Hertz contact. Proc. Inst. Mech. Eng. 196, 363–378 (1982)

    Article  Google Scholar 

  17. Harris, T., Kotzalas, M.: Essential Concepts of Bearing Technology. CRC Press, Boca Raton (2007)

    Google Scholar 

  18. Radzimovsky, E.I.: Stress distribution and strength conditions of two rolling cylinders pressed together. Eng. Exp. Sta. Univ. Ill. Bull. 408 (1953)

  19. Young, W.R., Budynas, R.G.: Roark’s Formulas for Stress & Strain. McGraw-Hill, New York (1989)

    Google Scholar 

  20. Goldsmith, W.: Impact, The Theory and Physical Behaviour of Colliding Solids. Edward Arnold, Sevenoaks (1960)

    MATH  Google Scholar 

  21. ESDU 78035 Tribology Series: Contact Phenomena. I: Stresses, Deflections and Contact Dimensions For Normally Loaded Unlubricated Elastic Components Engineering Sciences Data Unit, London (1978)

  22. Pereira, C.M., Ramalho, A.R., Ambrósio, J.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63, 681–697 (2011)

    Article  Google Scholar 

  23. Pereira, C., Ramalho, A., Ambrosio, J.: Applicability domain of internal cylindrical contact force models. Mech. Mach. Theory 78, 141–157 (2014)

    Article  Google Scholar 

  24. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. Int. J. Appl. Mech. 7, 440–445 (1975)

    Article  Google Scholar 

  25. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  26. Liu, C.-S., Zhang, K., Yang, L.: The FEM analysis and approximate model for cylindrical joints with clearances. Mech. Mach. Theory 42(2), 183–197 (2007)

    Article  MATH  Google Scholar 

  27. Lim, C.T., Stronge, W.J.: Oblique elastic-plastic impact between rough cylinders in plane strain. Int. J. Eng. Sci. 37, 97–122 (1999)

    Article  Google Scholar 

  28. Pereira, C., Ramalho, A., Ambrósio, J.: Conformal cylindrical contact force model verification using a finite element analysis. In: Topping, B.H.V., Tsompanakis, Y. (eds.) Proceedings of the Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing. Civil-Comp Press, Stirlingshire (2011), Paper 135

    Google Scholar 

  29. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  30. Pereira, C., Ramalho, A., Ambrósio, J.: Experimental and numerical validation of an enhanced cylindrical contact force model. In: de Hosson, J.T.M., Brebbia, C.A. (eds.) Surface Effects and Contact Mechanics X—Computational Methods and Experiments, vol. 7, pp. 49–60 (2011)

    Google Scholar 

  31. Nikravesh, P.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood-Cliffs (1988)

    Google Scholar 

  32. Zheng, E., ZhouLoad, X.: Modeling and simulation of flexible slider-crank mechanism with clearance for a closed high speed press system. Mech. Mach. Theory 74, 10–30 (2014)

    Article  Google Scholar 

  33. Flores, P., Koshy, C.S., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dyn. 65, 383–398 (2011)

    Article  Google Scholar 

  34. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. 1, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  35. Shampine, L., Gordon, M.: Computer Solution of Ordinary Differential Equations: The Initial Value Problem. Freeman, San Francisco (1975)

    MATH  Google Scholar 

  36. Schoeder, S., Ulbrich, H.: Thorsten Schindler, Discussion of the Gear–Gupta–Leimkuhler method for impacting mechanical systems. Multibody Syst. Dyn. 31(4), 477–495 (2014)

    Article  MathSciNet  Google Scholar 

  37. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. ESDU—65007 Tribology Series: General Guide to the Choice of Journal Bearing Type. Engineering Sciences Data Unit, London (1965)

  39. Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37, 895–913 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, C., Ramalho, A. & Ambrosio, J. An enhanced cylindrical contact force model. Multibody Syst Dyn 35, 277–298 (2015). https://doi.org/10.1007/s11044-015-9463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9463-x

Keywords

Navigation