Skip to main content
Log in

Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Cantournet, S., Desmorat, R., Besson, J.: Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model. Int. J. Solids Struct. 46, 2255–2264 (2009)

    Article  MATH  Google Scholar 

  • Diani, J., Brieu, M., Batzler, K., Zerlauth, P.: Effect of the Mullins softening on mode I fracture of carbon-black filled rubbers. Int. J. Fract. 194, 11–18 (2015)

    Article  Google Scholar 

  • Fei, G., Tuinea-Bobe, C., Li, D., Li, G., Whiteside, B., Coates, P., Xia, H.: Electro-activated surface micropattern tuning for microinjection molded electrically conductive shape memory polyurethane composites. RSC Adv. 3, 24132–24139 (2013)

    Article  Google Scholar 

  • Guo, X., Liu, L., Zhou, B., Liu, Y., Leng, J.: Influence of strain rates on the mechanical behaviors of shape memory polymer. Smart Mater. Struct. 24, 095009 (2015)

    Article  Google Scholar 

  • Hager, M.D., Bode, S., Weber, C., Schubert, U.S.: Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49, 3–33 (2015)

    Article  Google Scholar 

  • He, Y., Guo, S., Liu, Z., Liew, K.: Pattern transformation of thermo-responsive shape memory polymer periodic cellular structures. Int. J. Solids Struct. 71, 194–205 (2015)

    Article  Google Scholar 

  • Hearon, K., Wierzbicki, M.A., Nash, L.D., Landsman, T.L., Laramy, C., Lonnecker, A.T., Gibbons, M.C., Ur, S., Cardinal, K.O., Wilson, T.S.: A processable shape memory polymer system for biomedical applications. Adv. Healthc. Mater. 4, 1386–1398 (2015)

    Article  Google Scholar 

  • Hu, J.L., Ji, F.L., Wong, Y.W.: Dependency of the shape memory properties of a polyurethane upon thermomechanical cyclic conditions. Polym. Int. 54, 600–605 (2005)

    Article  Google Scholar 

  • Husson, J.M., Dubois, F., Sauvat, N.: A finite element model for shape memory behavior. Mech. Time-Depend. Mater. 15, 213–237 (2011)

    Article  Google Scholar 

  • Kang, H., Li, M., Tang, Z., Xue, J., Hu, X., Zhang, L., Guo, B.: Synthesis and characterization of biobased isosorbide-containing copolyesters as shape memory polymers for biomedical applications. J. Mater. Chem. B 2, 7877–7886 (2014)

    Article  Google Scholar 

  • Leng, J., Lan, X., Liu, Y., Du, S.: Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 56, 1077–1135 (2011)

    Article  Google Scholar 

  • Li, W., Gong, T., Chen, H., Wang, L., Li, J., Zhou, S.: Tuning surface micropattern features using a shape memory functional polymer. RSC Adv. 3, 9865–9874 (2013)

    Article  Google Scholar 

  • Li, Y., He, Y., Liu, Z.: A viscoelastic constitutive model for shape memory polymers based on multiplicative decompositions of the deformation gradient. Int. J. Plast. 91, 300–317 (2017)

    Article  Google Scholar 

  • Liu, Y., Gall, K., Dunn, M.L., Greenberg, A.R., Diani, J.: Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plast. 22, 279–313 (2006)

    Article  MATH  Google Scholar 

  • Liu, Z., Toh, W., Ng, T.Y.: Advances in mechanics of soft materials: a review of large deformation behavior of hydrogels. Int. J. Appl. Mech. 7, 1530001 (2015)

    Article  Google Scholar 

  • McClung, A.J., Tandon, G.P., Baur, J.W.: Strain rate-and temperature-dependent tensile properties of an epoxy-based, thermosetting, shape memory polymer (Veriflex-E). Mech. Time-Depend. Mater. 16, 205–221 (2012)

    Article  Google Scholar 

  • McClung, A.J., Tandon, G.P., Baur, J.W.: Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin. Mech. Time-Depend. Mater. 17(1), 39–52 (2013)

    Article  Google Scholar 

  • Meng, H., Li, G.: A review of stimuli-responsive shape memory polymer composites. Polymer 54, 2199–2221 (2013)

    Article  Google Scholar 

  • Molaaghaie-Roozbahani, M., Heydarzadeh, N., Baghani, M., Eskandari, A.H., Baniassadi, M.: An investigation on thermomechanical flexural response of shape-memory-polymer beams. Int. J. Appl. Mech. 8, 1650063 (2016)

    Article  Google Scholar 

  • Tao, R., Yang, Q.-S., He, X.-Q., Liew, K.-M.: Parametric analysis and temperature effect of deployable hinged shells using shape memory polymers. Smart Mater. Struct. 25, 115034 (2016)

    Article  Google Scholar 

  • Wang, A., Li, G., Meng, H.: Strain rate effect on the thermomechanical behavior of a thermoset shape memory polymer. Smart Mater. Struct. 22, 085033 (2013)

    Article  Google Scholar 

  • Yu, K., Qi, H.J.: Temperature memory effect in amorphous shape memory polymers. Soft Matter 10, 9423–9432 (2014)

    Article  Google Scholar 

  • Yu, K., Ge, Q., Qi, H.J.: Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers. Nat. Commun. 5, 3066 (2014a)

    Article  Google Scholar 

  • Yu, K., McClung, A.J., Tandon, G.P., Baur, J.W., Qi, H.J.: A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications. Mech. Time-Depend. Mater. 18, 453–474 (2014b)

    Article  Google Scholar 

  • Yu, K., Li, H., McClung, A.J., Tandon, G.P., Baur, J.W., Qi, H.J.: Cyclic behaviors of amorphous shape memory polymers. Soft Matter 12, 3234–3245 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the National Natural Science Foundation of China through grant numbers 11572236 and 11372236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zishun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Li, Y. & Liu, Z. Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer. Mech Time-Depend Mater 23, 249–266 (2019). https://doi.org/10.1007/s11043-018-9377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-018-9377-0

Keywords

Navigation