Skip to main content
Log in

Detection of genetic divergence among putative ethyl methane sulfonate mutants of super basmati using microsatellite markers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Seeds of super basmati were mutagenized with different ethyl methane sulphonate (EMS) doses for creating genetic variability.

Methods and results

A total of 48 randomly selected putative EMS mutants of super basmati were analyzed to dissect the genetic diversity by using 25 SSR primers located on twelve chromosomes of rice. SSRs analysis revealed that wide-range of genetic diversity is present among mutants of super basmati. A sum of 91 alleles were identified, out of these, 82 alleles were polymorphic and the rest of nine alleles were monomorphic in nature. The range of allele number was 2–10 with mean of 3.64 alleles/locus. The value of polymorphic information content was range between 0.039 (RM5) and 0.878 (RM44) with mean of 0.439 for each locus. A number of polymorphic markers showed unique bands of various sizes ranges from 75 to 1000 bp, during genetic dissection of mutant population. Dendrogram divided whole mutant population into four major groups. Phylogenic analyses revealed that 40–96%genetic similarity is present among individuals of mutant population.

Conclusion

It is concluded that EMS induced genetic variability and SSRs markers (RM44, RM154, RM1, RM252, RM334, RM487, RM110 and RM257) could be handy for the selection of rice mutants as parents for functional genomic and molecular breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ansari MR, Shaheen T, Bukhari SA, Husnain T (2015) Genetic improvement of rice for biotic and abiotic stress tolerance. Turk J Bot 39:911–919

    Article  CAS  Google Scholar 

  2. Naeem M, Ghouri F, Shahid MQ, Iqbal M, Baloch FS, Chen L, Allah S, Babar M, Rana M (2015) Genetic diversity genetic diversity in mutated and non mutated rice varieties. Genet Mol Res 14:17109–17123

    Article  CAS  PubMed  Google Scholar 

  3. Awan FS, Sadia B, Altaf J, Habib M, Hameed K, Hussain S (2021) Genetic variability through induced mutation. Genetic variation. IntechOpen

    Google Scholar 

  4. Botticella E, Sestili F, Hernandez-Lopez A, Phillips A, Lafiandra D (2011) High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIagenes. BMC Plant Biol 11:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raza A, Shaukat H, Ali Q, Habib M (2018) Assessment of RAPD markers to analyse the genetic diversity among sunflower (Helianthus annuus L.) genotypes. TURJAF 6(1):107–111

    Google Scholar 

  6. Matin S, Ashrafuzzaman M, Islam MM, Sikdar SU, Zobayer N (2012) Molecular marker based (SSR) genetic diversity analysis in deep water rice germplasms of Bangladesh. Int J Biosci 2:64–72

    CAS  Google Scholar 

  7. Hussain S, Habib M, Ahmed Z, Sadia B, Bernardo A, Amand PS, Maqbool R (2022) Genotyping-by-sequencing based molecular genetic diversity of Pakistani bread wheat (Triticum aestivum L.) accessions. Front Genet. https://doi.org/10.3389/fgene.2022.772517

    Article  PubMed  PubMed Central  Google Scholar 

  8. Senior ML, Murphy JP, Goodman MM, Stuber CW (1998) Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci 38:1088–1098

    Article  Google Scholar 

  9. Liu S, Cantrell RG, McCarty JC, Stewart JMD (2000) Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci 40:1459–1469

    Article  CAS  Google Scholar 

  10. Zhu Y, Hu J, Han R, Wang Y, Zhu S (2011) Fingerprinting and identification of closely related wheat (Triticum aestivum L.) cultivars using ISSR and fluorescence-labeled TP-M13-SSR markers. Afric J Crop Sci 5(7):846–860

    CAS  Google Scholar 

  11. Shamim MZ, Manzar H, Sharma VK, Kumar P (2016) Microsateliite marker based characterization and divergence analysis among rice varieties. Indian J Biotechnol 15:182–189

    Google Scholar 

  12. Li W, Wu J, Weng S, Zhang D, Zhang Y, Shi C (2010) Characterization and fine mapping of the glabrous leaf and hull mutants (gl1) in rice (Oryza sativa L.). Plant cell Rep 29:617–627

    Article  CAS  PubMed  Google Scholar 

  13. Pervaiz ZH, Rabbani MA, Khaliq I, Pearce SR, Malik SA (2010) Genetic diversity associated with agronomic traits using microsatellite markers in Pakistani rice landraces. Electron J Biotechnol 13(3):4–5

    Google Scholar 

  14. Guo Y, Cheng B, Hong D (2010) Construction of SSR linkage map and analysis of QTLs for rolled leaf in japonica rice. Rice Sci 17:28–34

    Article  Google Scholar 

  15. Thomson MJ, Polato NR, Prasetiyono J, Trijatmiko KR, Silitonga TS, McCouch SR (2009) Genetic diversity of isolated populations of Indonesian landraces of rice (Oryza sativa L.) collected in East Kalimantan on the island of Borneo. Rice 2:80–92

    Article  Google Scholar 

  16. Sweeney MT, Thomson MJ, Cho YG, Park YJ, Williamson SH, Bustamante CD, McCouch SR (2007) Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet 3(8):e133

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vikash K, Bhagwat SG (2012) Microsatellite (SSR) based assessment of genetic diversity among the semi-dwarf mutants of elite rice variety WL112. Int Plant Breed Genet 6(4):195–205

    Article  Google Scholar 

  18. Gul Z (2013) Genetic diversity of important rice cultivars of Kashmir valley using microsatellite markers. Afr J Biotechnol 12(7):658–664

    Google Scholar 

  19. Yesmin N, Elias SM, Rahman M, Haque T, Mahbub Hasan AKM, Seraj ZI (2014) Unique genotypic differences discovered among indigenous Bangladeshi rice landraces. Int J Genom. https://doi.org/10.1155/2014/210328

    Article  Google Scholar 

  20. Ni J, Colowit PM, Mackill DJ (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci 42:601–607

    Article  CAS  Google Scholar 

  21. Chauhan RA, Patel DH, Rajkumar BK, Parmar PR, Sejal R (2018) Induction genetic variability using ems and its molecular analysis using RAPD, ISSR and SSR markers in cotton. J Pharmacogn Phytochem 7(2):591–594

    CAS  Google Scholar 

  22. Hameed K, Khan MS, Sadaqat HA, Awan FS (2019) Phenotypic characterization of super basmati ethyl methane sulfonate (EMS) induced mutants. PakJAS 56(2):10

    Google Scholar 

  23. Zheng KL, Huang N, Bennett J, Khush GS (1995) PCR-based phylogenetic analysis of wide compatibility varieties in Oryza sativa L. Theor Appl Genet 88:65–69

    Article  Google Scholar 

  24. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  CAS  PubMed  Google Scholar 

  25. Pal S, Jain S, Saini N, Aarti JRK (2004) Identification of microsatellite markers for differentiating some basmati and non-basmati rice varieties. Indian J Biotechnol 3:519–526

    CAS  Google Scholar 

  26. Mahalingam A, Saraswathi R, Ramalingam J (2013) Simple sequence repeat (SSR) markers for assessing genetic diversity among the parental lines of hybrid rice (Oryza sativa L.). Afric J Biotechnol 12(33):5105–5116

    Article  CAS  Google Scholar 

  27. Nagaraju J, Kathirvel M, Kumar RR, Siddiq EA, Hasnain SE (2002) Genetic analysis of traditional and evolves basmati and non-basmati rice varieties by using flouresence—based ISSR-PCR and SSR markers. Proc Natl Acad Sci USA 99:5836–5841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Allhgholipour M, Farshdfar E, Rabiei B (2014) Molecular characterization and genetic diversity analysis of different rice cultivars by microsatellite markers. Genetika 46:187–198

    Article  Google Scholar 

  29. Berilus SR, Pattanayak A, Ram G (2013) Analysis of genetic variability in rice cultivars of Arunachal Pradesh (India) using microsatellite marker. Afr J Biotechnol 12(8):1–8

    Google Scholar 

  30. Babu BK, Meena V, Agarwal V, Agrawal PK (2014) Population structure and genetic diversity analysis of Indian and exotic rice (Oryza sativa L.) accessions using SSR markers. Mol Biol Rep 41:4329–4339

    Article  CAS  PubMed  Google Scholar 

  31. Lee HH, Neoh PPN, Bong WST, Puvaneswaran J, Wong SC, Yiu PH, Rajan A (2011) Genotyping of Sarawak rice cultivars using microsatellite markers. Pertanika J Trop Agri Sci 34:123–136

    Google Scholar 

  32. Liu K, Muse SV (2005) PowerMarker: an intregrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  33. Yeh FC, Yang RC, Boyle T (1999) POPGENE Version 1.32: Microsoft window-based freeware for population genetics analysis. University of Alberta, Edmonton

    Google Scholar 

  34. Nei M, Li WH (1979) Mathematical model of studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:s5269-5276

    Article  Google Scholar 

  35. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  36. Rahman L, Islam MN, Rahman MS, Islam MS, Shah-e-Alam M, Bashar MK (2008) Characterization of 94 rice (Oryza sativa L.) varieties of Bangladesh based on microsatellite loci. Bangladesh J Agril Sci 35(1):97–112

    Google Scholar 

  37. Rahman MS, Sohag MKH, Rahman L (2010) Microsatellite based DNA fingerprinting of 28 local rice (Oryza sativa L.) varieties of Bangladesh. J Bangaladesh Agri Univ 8:7–17

    Article  Google Scholar 

  38. Taheri S, Abdullah TL, Ahmad Z, Sahebi M, Azizi P (2016) Phenotypic and molecular effects of chronic gamma irradiation on curcuma alismatifolia. Eur J Horti Sci 81:137–147

    Article  Google Scholar 

  39. Kumar GR, Sakthivel K, Sundaram RM, Neeraja CN, Balachandran SM, Rani NS, Viraktamath BC, Madhav MS (2010) Allele mining in crops: prospects and potentials. Biotechnol Adv 28:451–461

    Article  CAS  PubMed  Google Scholar 

  40. Patel S, Ravikiran R, Chakraborty S, Macwana S, Sasidharan N, Trivedi R, Aher B (2014) Genetic diversity analysis of colored and white rice genotypes using microsatellite (SSR) and insertion-deletion (INDEL) markers. J Food Agri 26:497–507

    Google Scholar 

  41. Sahu VK, Sunil NK, Vishwakarma AK, Verulkar SB, Chandel G (2017) QTL hotspots detected for yield contributing traits in rice (Oryza sativa L.) using composite interval mapping analysis. Biosci Biotechnol Res Asia 14:329–341

    Article  Google Scholar 

  42. Jain S, Mitchell SE, Jain RK, Kresovich S, McCouch SR (2003) DNA fingerprinting and phylogenetic analysis of Indian aromatic high-quality rice germplasm using panels of fluorescent-labeled microsatellite markers. Advances in rice genetics. World Scientific, pp 162–166

    Google Scholar 

  43. Choudhary N, Ahuja U, Chawla V, Jain RK, Kumari P, Batan KR (2011) Morphological and molecular variability in weedy rice of Haryana. Asian J Agri Res 5:250–259

    Google Scholar 

  44. Chen LJ, Lee DS, Song ZP, Shu HS, Lu BR (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot 93:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kawai T (1965) Studies on artificial induction of mutations in rice by chemicals. 1. Chlorophyll mutations by ethyl imine and ethylene oxide treatments. Bull Nat Inst Agr Sci Ser D 13:133–162

    Google Scholar 

  46. Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MRS, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97

    Article  CAS  PubMed  Google Scholar 

  47. Ghneim Herrera T, Posso Duque P, Perez Alemeida I, Torrealba Núñez G, Pieters AJ, Masrtinez CP, Tohme JM (2008) Assessment of genetic diversity in Venezuelan rice cultivar using simple sequence repeats markers. Electron J Biotechnol 11(5):3–4

    Article  Google Scholar 

  48. Arif M, Kousar S, Bajwa MA, Arif A, Zafar Y (2005) Genetic diversity among rice genotypes of Pakistan through random amplified polymorphic DNA (RAPD) analysis. Pak J Bot 37(3):585–592

    Google Scholar 

  49. Tu M, Lu BR, Zhu Y, Wang Y (2007) Abundant within-varietal genetic diversity in rice germplasm from Yunnan Province of China revealed by SSR fingerprints. Biochem Genet 45:789–801

    Article  CAS  PubMed  Google Scholar 

  50. Wong SC, Yiu PH, Bong STW, Lee HH, Neoh PNP, Rajan A (2009) Analysis of Sarawak Bario rice diversity using microsatellite markers. Am J Agri Biol Sci 4:298–304

    Article  Google Scholar 

  51. Oladosu Y, Rafii MY, Abdullah N, Malek MA, Rahim HA, Hussin G, Ismail MR, Latif MA, Kareem I (2015) Genetic variability and diversity of mutant rice revealed by quantitative traits and molecular markers. Agrociencia 49(3):249–266

    Google Scholar 

  52. Domingo C, Andrés F, Talón M (2007) Rice cv. Bahia mutagenized population: a new resource for rice breeding in the Mediterranean basin. Spanish J Agri Res 5:341–347

    Article  Google Scholar 

  53. Shehata SM, Ammar MH, Abdelkalik AF, Zayed BA (2009) Morphological, molecular and biochemical evaluation of Egyptian jasmine rice variety and its M5 derived mutants. Afr J Biotechnol 8:6110–6116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Higher Education Commission (HEC), Islamabad, Pakistan for providing funds for this research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization by [FSA]; manuscript writing data collection and analysis was done by [KH] and [MH]; Supervision of research activity was done by [FSA] and [ZQ]; draft was reviewed and edited by [BS], [SH] and [HASA]. All authors offered suggestions in preparation of the final manuscript.

Corresponding author

Correspondence to Faisal Saeed Awan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Feng Zhou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, K., Habib, M., Awan, F.S. et al. Detection of genetic divergence among putative ethyl methane sulfonate mutants of super basmati using microsatellite markers. Mol Biol Rep 50, 8799–8808 (2023). https://doi.org/10.1007/s11033-023-08425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08425-1

Keywords

Navigation