Skip to main content
Log in

Characterization and fine mapping of the glabrous leaf and hull mutants (gl1) in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The glabrous leaf and hull (gl1) mutants were isolated from M2 generation of indica cultivar 93-11. These mutants produced smooth leaves and hairless glumes under normal growth conditions. By analyzing through scanning electron microscope, it was revealed that the leaf trichomes, including macro and micro hairs, were deficient in these mutants. Genetic analysis indicated that the mutation was controlled by a single recessive gene. Using nine SSR markers and one InDel marker, the gl1 gene was mapped between RM1200 and RM2010 at the short arm of chromosome 5, which was consistent with the mapping of gl1 in previous studies. To facilitate the map-based cloning of the gl1 gene, 12 new InDel markers were developed. A high-resolution genetic and physical map was constructed by using 1,396 mutant individuals of F2 mapping population. Finally, the gl1 was fine mapped in 54-kb region containing 10 annotated genes. Cloning and sequencing of the target region from four gl1 mutants (gl1-1, gl1-2, gl1-3 and gl1-4) and four glabrous rice varieties (Jackson, Jefferson, Katy and Lemont) all showed that the same single point mutation (A→T) occurred in the 5′-untranslated region (UTR) of the locus Os05g0118900 (corresponding to the 3′-UTR of STAR2). RT-PCR analysis of the locus Os05g0118900 revealed that its mRNA expression level was normal in gl1 mutant. RNA secondary structure prediction showed that the single point mutation resulted in a striking RNA conformational change. These results suggest that the single point mutation is most likely responsible for the glabrous leaf and hull phenotypes in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allamand V, Richard P, Lescure A, Ledeuil C, Desjardin D, Petit N, Gartioux C, Ferreiro A, Krol A, Pellegrini N, Urtizberea JA, Guicheney P (2006) A single homozygous point mutation in a 3′-untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy. EMBO Rep 7:450–454

    CAS  PubMed  Google Scholar 

  • Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498

    Article  CAS  PubMed  Google Scholar 

  • Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    CAS  PubMed  Google Scholar 

  • Day IS, Miller C, Golovkin M, Reddy AS (2000) Interaction of a kinesin-like calmodulin-binding protein with a protein kinase. J Biol Chem 275:13737–13745

    Article  CAS  PubMed  Google Scholar 

  • Duvel K, Braus GH, Egli CM (1999) A single point mutation in the yeast TRP4 gene affects efficiency of mRNA 3′ end processing and alters selection of the poly(A) site. Nucl Acids Res 27:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Luo L, Zhong D, Yu X, Mei H, Wang Y, Ying C (1999) Evaluation, improvement and utilization on some selected American rice cultivars. J Zhejiang Agric Sci 5:201–206

    Google Scholar 

  • Hansen JD, Pyee J, Xia Y, Wen TJ, Robertson DS, Kolattukudy PE, Nikolau BJ, Schnable PS (1997) The glossy1 locus of maize and an epidermis-specific cDNA from Klenia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol 113:1091–1100

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Tang S, Luo J, Huang F (1999) Utilization of American glabrous rice and breeding of super-high-yielding varieties. Acta Agron Sin 25:32–38

    Google Scholar 

  • Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655–667

    Article  CAS  PubMed  Google Scholar 

  • Hülskamp M (2004) Plant trichomes: a model for cell differentiation. Nat Rev Mol Cell Biol 5:471–480

    Article  PubMed  Google Scholar 

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Johnson HB (1975) Plant pubescence: an ecological perspective. Bot Rev 41:233–258

    Article  Google Scholar 

  • Kobayashi K, Ishikawa R, Senda M, Akada S, Harada T, Niizeki M (1997) Six glabrous phenotypes of rice classified with a scanning electron microscope. Rice Genet Newsl 14:53–54

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    Article  CAS  PubMed  Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defense. Q Rev Biol 48:3–15

    Article  Google Scholar 

  • Liu R, Meng J (2003) MapDraw: a Microsoft Excel Macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) 25:317–321

    Google Scholar 

  • Liu W, Zhang J, Luo W, Lin Q, Chi X, Cai W (2005) Progress in breeding of nude hybrid rice. Hybrid Rice 20:6–10

    CAS  Google Scholar 

  • Lu L, Lee YR, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Hu P, Tang S, Huang F (2000) American glabrous rice utilized in breeding of super-high-yielding and good-quality varieties. Chin Rice Res Newsl 8:3–5

    Google Scholar 

  • Marks MD (1997) Molecular genetic analysis of trichome development in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 48:137–163

    Article  CAS  PubMed  Google Scholar 

  • Masaharu S, Al MA, Katsuyoshi N (1977) A study on the rice leaf trichome with special reference to varietal differences. Crop Sci Soc Jpn 79:21–24

    Google Scholar 

  • Mauricio R, Rausher MD (1997) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51:1435–1444

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregation analysis: a rapid method to detect markers in specific genomic regions by using segregation population. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  Google Scholar 

  • Moose SP, Sisco PH (1994) Glossy15 controls the epidermal juvenile-to-adult phase transition in maize. Plant Cell 6:1343–1355

    Article  CAS  PubMed  Google Scholar 

  • Moose SP, Sisco PH (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Ouyang A, Yi J, Fu J (2006) Breeding of Guangye A, a glabrous CMS line with fine grain quality in rice. Hybrid Rice 21:13–14

    Google Scholar 

  • Payne T, Clement J, Arnold D, Lloyd A (1999) Heterologous myb genes distinct from GL1 enhance trichome production when over expressed in Nicotiana tabacum. Development 126:671–682

    CAS  PubMed  Google Scholar 

  • Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, Jetter R, Kunst L, Samuels AL (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Zhang D, Lin X, Xie Y (1997) Classification of Yunnan Nuda compatible varieties. J Huazhong Agric Univ 16:320–324

    Google Scholar 

  • Reddy AS, Day IS (2000) The role of the cytoskeleton and a molecular motor in trichome morphogenesis. Trends Plant Sci 5:503–505

    Article  CAS  PubMed  Google Scholar 

  • Schellmann S, Hülskamp M (2005) Epidermal differentiation: trichomes in Arabidopsis as a model system. Int J Dev Bio 49:579–584

    Article  Google Scholar 

  • Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:274–280

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Jiang H, Jin J, Zhang Z, Xi B, He Y, Wang G, Wang C, Qian L, Li X, Yu Q, Liu H, Chen D, Gao J, Huang H, Shi T, Yang Z (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205

    Article  CAS  PubMed  Google Scholar 

  • Sturaro M, Hartings H, Schmelzer E, Velasco R, Salamini F, Motto M (2005) Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489

    Article  CAS  PubMed  Google Scholar 

  • Szymanski DB, Lloyd AM, Marks MD (2000) Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci 5:214–219

    Article  CAS  PubMed  Google Scholar 

  • Tacke E, Korfhage C, Michel D, Maddaloni M, Motto M, Lanzini S, Salamini F, Döring HP (1995) Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm. Plant J 8:907–917

    CAS  PubMed  Google Scholar 

  • Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Sun S, Fa Gao, Lu X, Li Z, Ren G (2009) Mapping a rice glabrous gene using simple sequence repeat markers. Rice Sci 16:93–98

    Article  Google Scholar 

  • Wong PM, Yuan Q, Chen H, Sultzer BM, Chung SW (2001) A single point mutation at the 3′-untranslated region of Ran mRNA leads to profound changes in lipopolysaccharide endotoxin-mediated responses. J Biol Chem 276:33129–33138

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Dietrich CR, Delledonne M, Xia Y, Wen TJ, Robertson DS, Nikolau BJ, Schnable PS (1997) Sequence analysis of the cloned glossy8 gene of maize suggests that it may code for a β-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115:501–510

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Dietrich CR, Lessire R, Nikolau BJ, Schnable PS (2002) The endoplasmic reticulum-associated maize GL8 protein is a component of the acyl-coenzyme A elongase involved in the production of cuticular waxes. Plant Physiol 128:924–934

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Wu J, Du J, Zheng X, Zhang Z, Shi C (2006) The screening of mutants and construction of mutant population for cultivar “9311” in rice (Oryza sativa L.). Acta Agron Sin 32:1525–1529

    Google Scholar 

  • Yu ZH, McCouch SR, Kinoshita T, Sato S, Tanksley SD (1995) Association of morphological and RFLP markers in rice (Oryza sativa L.). Genome 38:566–574

    CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Xu F, Shen S, Deng J (2000) Correlation of indica–japonica classification and morphological character of Yunnan nuda rice cultivars. Chin J Rice Sci 14:115–118

    Google Scholar 

  • Zhao C, Yang C, Wu L, Qi X, Huang F, Hu P, Luo J (1999) Studies of culture character in glabrous rice (Oryza sativa L.). Acta Agron Sin 25:82–85

    Google Scholar 

  • Zhu X, Sun D, Cheng B, Hong D (2008) Distribution characterization of leaf and hulI pubescences and genetic analysis of their numbers in japonica rice (Oryza sativa). Rice Sci 15:267–275

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Office of Zhejiang Province (nos. 2007C12902), the Education Office of Zhejiang Province (Y200909747), the National High Technology Research and Devlopment Program of China (2006AA100101) and the 151 Foundation for the Talents of Zhejiang Province. We appreciate the efforts taken by Alfred Quampah and Mahmood Ul Hassan in revising the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhai Shi.

Additional information

Communicated by P. Puigdomenech.

W. Li and J. Wu contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOC 42 kb)

Supplementary Figure 1 (JPEG 949 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Wu, J., Weng, S. et al. Characterization and fine mapping of the glabrous leaf and hull mutants (gl1) in rice (Oryza sativa L.). Plant Cell Rep 29, 617–627 (2010). https://doi.org/10.1007/s00299-010-0848-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0848-2

Keywords

Navigation