Skip to main content
Log in

Regulation of β-amylase synthesis: a brief overview

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The major activity of β-amylase (BMY) is the production of maltose by the hydrolytic degradation of starch. BMY is found to be produced by some plants and few microorganisms only. The industrial importance of the enzyme warrants its application in a larger scale with the help of genetic engineering, for which the regulatory mechanism is to be clearly understood.

Results and Conclusion

In plants, the activities of BMY are regulated by various environmental stimuli including stress of drought, cold and heat. In vascular plant, Arabidopsis sp. the enzyme is coded by nine BAM genes, whereas in most bacteria, BMY enzymes are coded by the spoII gene family. The activities of these genes are in turn controlled by various compounds. Production and inhibition of the microbial BMY is regulated by the activation and inactivation of various BAM genes. Various types of transcriptional regulators associated with the plant- BMYs regulate the production of BMY enzyme. The enhancement in the expression of such genes reflects evolutionary significance. Bacterial genes, on the other hand, as exemplified by Bacillus sp and Clostridium sp, clearly depict the importance of a single regulatory gene, the absence or mutation of which totally abolishes the BMY activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U, Chinni SV (2017) Biotechnological processes in microbial amylase production. Biomed Res Int 2017:1272193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ray RR, Nanda G (1996) Microbial β-amylases: biosynthesis, characteristics, and industrial applications. Crit Rev Microbiol 22(3):181–199

    Article  CAS  PubMed  Google Scholar 

  3. Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56(1):16–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vajravijayan S, Pletnev S, Mani N, Pletneva N, Nandhagopal N, Gunasekaran K (2018) Structural insights on starch hydrolysis by plant β-amylase and its evolutionary relationship with bacterial enzymes. Int J Biol Macromol 113:329–337

    Article  CAS  PubMed  Google Scholar 

  5. Robinson PK (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaplan F, Guy CL (2004) beta-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135(3):1674–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kossmann J, Lloyd J (2000) Understanding and influencing starch biochemistry. Crit Rev Biochem Mol Biol 35:141–196

    CAS  PubMed  Google Scholar 

  8. Das R, Kayastha AM (2019) β-amylase: general properties, mechanism and panorama of applications by immobilization on nano-structures. In: Husain Q, Ullah M (eds) Biocatalysis. Springer, Cham

    Google Scholar 

  9. Husain Q, Ullah MF (eds) (2019) Biocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-25023-2

    Book  Google Scholar 

  10. Uozumi N, Matsuda T, Tsukagoshi N, Udaka S (1991) Structural and functional roles of cysteine residues of Bacillus polymyxa beta-amylase. Biochemistry 30(18):4594–4599

    Article  CAS  PubMed  Google Scholar 

  11. Kaplan F, Guy CL (2005) RNA interference of Arabidopsis beta-amylase prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J 44(5):730–743

    Article  CAS  PubMed  Google Scholar 

  12. Swanson MA (1948) Studies on the structure of polysaccharides IV. Relation of the iodine color to the structure. J Biol Chem 172(2):825–837

    Article  CAS  PubMed  Google Scholar 

  13. Cleveland F, Kerr R (1948) The action of beta-amylase on corn amylose. Cereal Chem 25(2):133–139

    CAS  Google Scholar 

  14. French D, Levine ML, Pazur J, Norberg E (1950) Studies on the schardinger dextrins. IV. The action of soy bean beta amylase on amyloheptaose. J Am Chem Soc 72(4):1746–1748

    Article  CAS  Google Scholar 

  15. Thoma JA, Koshland DE (1960) Stereochemistry of enzyme, substrate, and products during beta-amylase action. J Biol Chem 235:2511–2517

    Article  CAS  PubMed  Google Scholar 

  16. Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and post-transcriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 136(1):2687–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eglinton JK, Langridge P, Evans DE (1998) Thermostability variation in alleles of barley betaamylase. J Cereal Sci 28(3):301–309

    Article  CAS  Google Scholar 

  18. Fulton DC, Stettler M, Mettler T, Vaughan CK, Li J, Francisco P (2008) Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell 20:1040–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sparla F, Costa A, Lo Schiavo F, Pupillo P, Trost P (2006) Redox regulation of a novel plastid-targeted β-amylase. Plant Physiol 141:840–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li J, Zhou W, Francisco P, Wong R, Zhang D, Smith SM (2017) Inhibition of Arabidopsis chloroplast β-amylase BAM3 by maltotriose suggests a mechanism for the control of transitory leaf starch mobilisation. PLoS ONE 12:e0172504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Saika H, Nakazono M, Ikeda A, Yamaguchi J, Masaki S (2005) Kanekatsu MA transposon-induced spontaneous mutation results in low β-amylase content in rice. Plant Sci 169:239–244

    Article  CAS  Google Scholar 

  22. Hirano T, Takahashi Y, Fukayama H, Michiyama H (2011) Identification of two plastid-targeted β-amylases in rice. Plant Prod Sci 14:318–324

    Article  CAS  Google Scholar 

  23. Laby RJ, Kim D, Gibson SI (2001) The ram1 mutant of Arabidopsis exhibits severely decreased βamylase activity. Plant Physiol 127(4):1798–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee JS, Wittchen KD, Stahl C, Strey J, Meinhardt F (2001) Cloning, expression, and carbon catabolite repression of the bamM gene encoding β-amylase of Bacillus megaterium DSM319. Appl Microbiol Biotechnol 56:205–211

    Article  CAS  PubMed  Google Scholar 

  25. Amore A, Giacobbe S, Faraco V (2013) Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics 14(4):230–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ray RR, Jana SC, Nanda G (1996) Induction and carbon catabolite repression in the biosynthesis of beta-amylase by Bacillus megaterium B6. Biochem Mol Biol Int 38(2):223–230

    CAS  PubMed  Google Scholar 

  27. Hyun HH, Zeikus JG (1985) General biochemical characterization of thermostable extracellular P-amylase of Clostridium thermosulfirogenes. Appl Environ Microbiol 49:1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chatterjee BS, Ghosh A, Das A (1992) Starch digestion and adsorption by P-amylase of Emericella nidulans (Aspergillus nidulans). J Appl Bacteriol 12:208

    Article  Google Scholar 

  29. Mizukami M, Yamagata H, Sakaguchi K, Udaka S (1992) Efficient production of thermostable Clostridium thermosulfurogenes P-amylase by Bacillus brevis. J Ferment Bioeng 73:112

    Article  CAS  Google Scholar 

  30. Nanmori T, Numata Y, Shinke R (1987) Isolation and characterization of a Bacillus cereus mutant strain hyperproductive of exo p-amylase. Appl Environ Microbiol 53:768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koaze Y, Nakajima Y, Hidaka H, Niwa T, Yoshida K, Ito J, Niida T, Shomura T, Ueda M (1975) U.S. Patent 3,368-464

  32. Glen PF, Fox LW (2020) Barley: current understanding of ‘omics data on quality. In: Beddows C (ed) Reference module in food science. Elsevier, Amsterdam

    Google Scholar 

  33. Gimbi DM, Kitabatake N (2002) Changes in alpha-and beta-amylase activities during seed germination of African finger millet. Int J Food Sci Nutr 53(6):481–488. https://doi.org/10.1080/09637480220164361

    Article  CAS  PubMed  Google Scholar 

  34. Mita S, Suzuki-Fujii K, Nakamura K (1995) Sugar-inducible expression of a gene for beta-amylase in Arabidopsis thaliana. Plant Physiol 107(3):895–904. https://doi.org/10.1104/pp.107.3.895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Erkkilä MJ, Leah R, Ahokas H, Cameron-Mills V (1998) Allele-dependent barley grain beta-amylase activity. Plant Physiol 117(2):679–685

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yue C, Cao H, Lin H et al (2019) Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments. Planta 250:281–298

    Article  CAS  PubMed  Google Scholar 

  37. Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6(8):613–624

    Article  PubMed  CAS  Google Scholar 

  38. Hueck CJ, Hillen W (1995) Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Mol Microbiol 15(3):395–401

    Article  CAS  PubMed  Google Scholar 

  39. Wittchen KD, Meinhardt F (1995) Inactivation of the major extracellular protease from Bacillus megaterium DSM319 by gene replacement. Appl Microbiol Biotechnol 42:871–877

    Article  CAS  PubMed  Google Scholar 

  40. Maeo K, Tomiya T, Hayashi K, Akaike M, Morikami A, Ishiguro S, Nakamura K (2001) Sugar-responsible elements in the promoter of a gene for beta-amylase of sweet potato. Plant Mol Biol 46(5):627–637

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Liu J, Hou J, Yao Y, Lin Y, Ou Y, Song B, Xie C (2014) The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity. Plant Biotechnol J 12(7):984–993

    Article  CAS  PubMed  Google Scholar 

  42. Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH (1991) Catabolite repression of α amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol 5:575–584. https://doi.org/10.1111/j.1365-2958.1991.tb00728.x

    Article  CAS  PubMed  Google Scholar 

  43. Fujita Y, Miwa Y, Galinier A, Deutscher J (1995) Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbial 17:953–960

    Article  CAS  Google Scholar 

  44. Kinoshita T, Caño-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171

    Article  CAS  PubMed  Google Scholar 

  45. Reinhold H, Soyk S, Šimková K, Hostettler C, Marafino J, Mainiero S, Vaughan CK, Monroe JD, Zeeman SC (2011) b-amylase–like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell 23:1391–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Özcan D, SİpahİoĞlu HM (2020) Simultaneous production of alpha and beta amylase enzymes using separate gene bearing recombinant vectors in the same Escherichia coli cells. Turk J Biol Turk biyoloji dergisi 44(4):201–207. https://doi.org/10.3906/biy-2001-71

    Article  CAS  PubMed  Google Scholar 

  47. Ali M, Ishqi HM, Husain Q (2020) Enzyme engineering: reshaping the biocatalytic functions. Biotechnol Bioeng. https://doi.org/10.1002/bit.27329

    Article  PubMed  Google Scholar 

  48. Nipkow A, Shen GJ, Zeikus JG (1989) Continuous production of thermostable P-amylase with Clostridium thermosulfurogenes: effect of culture conditions and metabolite levels on enzyme synthesis and activity. Appl Environ Microbiol 55:689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang CJ, Chen YL, Hsu WH (1988) Thermostable P-amylase production by Bacillus circulans H-107. J Chin Agric Chem SOC 26:457

    CAS  Google Scholar 

  50. Sandhu DK, Vilkhu KS, Soni SK (1987) Production of a-amylase by Saccharomyces jibulig era (syn. Endomycopsis jibulig era). J Ferment Technol 65:387

    Article  CAS  Google Scholar 

  51. Duan X, Shen Z, Zhang X, Wang Y, Huang Y (2019) Production of recombinant beta-amylase of Bacillus aryabhattai. Prep Biochem Biotechnol 49:88

    Article  CAS  PubMed  Google Scholar 

  52. Monroe JD, Storm AR (2018) Review: the Arabidopsis β-amylase (BAM) gene family: diversity of form and function. Plant Sci 276:163–170

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally in drafting the manuscript.

Corresponding author

Correspondence to Rina Rani Ray.

Ethics declarations

Conflict of interest

The authors don’t have any conflict of interest.

Ethical approval

Not Applicable.

Consent to participate

Not Applicable.

Consent to publish

All the authors have consent to publish.

Informed consent

All the authors have the consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, M., Lahiri, D., Garai, S. et al. Regulation of β-amylase synthesis: a brief overview. Mol Biol Rep 48, 6503–6511 (2021). https://doi.org/10.1007/s11033-021-06613-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06613-5

Keywords

Navigation