Skip to main content
Log in

Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The alpha-amylase and beta-amylase genes have been identified from tea plants, and their bioinformatic characteristics and expression patterns provide a foundation for further studies to elucidate their biological functions.

Abstract

Alpha-amylase (AMY)- and beta-amylase (BAM)-mediated starch degradation plays central roles in carbohydrate metabolism and participates extensively in the regulation of a wide range of biological processes, including growth, development and stress response. However, the AMY and BAM genes in tea plants (Camellia sinensis) are poorly understood, and the biological functions of these genes remain to be elucidated. In this study, three CsAMY and nine CsBAM genes from tea plants were identified based on genomic and transcriptomic database analyses, and the genes were subjected to comprehensive bioinformatic characterization. Phylogenetic analysis showed that the CsAMY proteins could be clustered into three different subfamilies, and nine CsBAM proteins could be classified into four groups. Putative catalytically active proteins were identified based on multiple sequence alignments, and the tertiary structures of these proteins were analyzed. Cis-element analysis indicated that CsAMY and CsBAM were extensively involved in tea plant growth, development and stress response. In addition, the CsAMY and CsBAM genes were differentially expressed in various tissues and were regulated by stress treatments (e.g., ABA, cold, drought and salt stress), and the expression patterns of these genes were associated with the postharvest withering and rotation processes. Taken together, our results will enhance the understanding of the roles of the CsAMY and CsBAM gene families in the growth, development and stress response of tea plants and of the potential functions of these genes in determining tea quality during the postharvest processing of tea leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABRE:

ABA response element

AMY:

α-Amylase

ARE:

Anaerobic response element

BAM:

β-Amylase

BZR1:

Brassinazole resistant 1

DPE:

Disproportionating enzyme

GH:

Glycoside hydrolase

SBE:

Starch-branching enzyme

STRE:

Stress responsive element

References

  • Asatsuma S, Sawada C, Itoh K, Okito M, Kitajima A, Mitsui T (2005) Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol 46:858–869

    Article  CAS  PubMed  Google Scholar 

  • Chen PW, Chiang CM, Tseng TH, Yu SM (2006) Interaction between rice MYBGA and the gibberellin response element controls tissue-specific sugar sensitivity of alpha-amylase genes. Plant Cell 18:2326–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle EA, Lane AM, Sides JM, Mudgett MB, Monroe JD (2007) An alpha-amylase (At4g25000) in Arabidopsis leaves is secreted and induced by biotic and abiotic stress. Plant Cell Environ 30:388–398

    Article  CAS  PubMed  Google Scholar 

  • Fan ZQ, Ba LJ, Shan W, Xiao YY, Lu WJ, Kuang JF, Chen JY (2018) A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6. Plant J 96:1191–1205

    Article  CAS  PubMed  Google Scholar 

  • Fulton DC, Stettler M, Mettler T, Vaughan CK, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith AM, Smith SM, Zeeman SC (2008) Beta-amylase4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell 20:1040–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Westcott S, Zhang XQ, Yan G, Lance R, Zhang G, Sun D, Li C (2013) Discovery of novel Bmy1 alleles increasing β-amylase activity in Chinese landraces and Tibetan wild barley for improvement of malting quality via MAS. PLoS One 8:e72875–e72875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graf A, Smith AM (2011) Starch and the clock: the dark side of plant productivity. Trends Plant Sci 16:169–175

    Article  CAS  PubMed  Google Scholar 

  • Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7:1879–1891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Chen J, Yang J, Yu Y, Yang Y, Wang W (2018) Identification, characterization and expression analysis of the VQ motif-containing gene family in tea plant (Camellia sinensis). BMC Genom 19:710

    Article  CAS  Google Scholar 

  • Hao X, Li L, Hu Y, Zhou C, Wang X, Wang L, Zeng J, Yang Y (2016) Transcriptomic analysis of the effects of three different light treatments on the biosynthesis of characteristic compounds in the tea plant by RNA-Seq. Tree Genet Genomes 12:118

    Article  Google Scholar 

  • Hao X, Yang Y, Yue C, Wang L, Horvath DP, Wang X (2017) Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages. Front Plant Sci 8:553

    PubMed  PubMed Central  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 2:309–316

    Article  Google Scholar 

  • Hocker B, Beismann-Driemeyer S, Hettwer S, Lustig A, Sterner R (2001) Dissection of a (βα)8-barrel enzyme into two folded halves. Nat Struct Biol 8:32–36

    Article  CAS  PubMed  Google Scholar 

  • Horrer D, Flütsch S, Pazmino D, Matthews Jack SA, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D (2016) Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Curr Biol 26:362–370

    Article  CAS  PubMed  Google Scholar 

  • Hu CJ, Li D, Ma YX, Zhang W, Lin C, Zheng XQ, Liang YR, Lu JL (2018) Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. Food Chem 269:202–211

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Stebbins GL, Rodriguez RL (1992) Classification and evolution of alpha-amylase genes in plants. PNAS 89:7526–7530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janson G, Zhang C, Prado MG, Paiardini A (2017) PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL. Bioinformatics 33:444–446

    CAS  PubMed  Google Scholar 

  • Jourda C, Cardi C, Gibert O, Giraldo Toro A, Ricci J, Mbéguié-A-Mbéguié D, Yahiaoui N (2016) Lineage-specific evolutionary histories and regulation of major starch metabolism genes during banana ripening. Front Plant Sci 7:1778

    Article  PubMed  PubMed Central  Google Scholar 

  • Junior AV, do Nascimento JR, Lajolo FM (2006) Molecular cloning and characterization of an alpha-amylase occurring in the pulp of ripening bananas and its expression in Pichia pastoris. J Agr Food Chem 54:8222–8228

    Article  CAS  Google Scholar 

  • Kadziola A, Abe J, Svensson B, Haser R (1994) Crystal and molecular structure of barley alpha-amylase. J Mol Biol 239:104–121

    Article  CAS  PubMed  Google Scholar 

  • Kang YN, Adachi M, Utsumi S, Mikami B (2004) The roles of Glu186 and Glu380 in the catalytic reaction of soybean beta-amylase. J Mol Biol 339:1129–1140

    Article  CAS  PubMed  Google Scholar 

  • Kang Y-N, Tanabe A, Adachi M, Utsumi S, Mikami B (2005) Structural analysis of threonine 342 mutants of soybean β-Amylase: role of a conformational change of the inner loop in the catalytic mechanism. Biochemistry 44:5106–5116

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Guy CL (2004) Beta-amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135:1674–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan F, Guy CL (2005) RNA interference of Arabidopsis beta-amylase 8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J 44:730–743

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Sung DY, Guy CL (2006) Roles of β-amylase and starch breakdown during temperatures stress. Physiol Plant 126:120–128

    Article  CAS  Google Scholar 

  • Kitajima A, Asatsuma S, Okada H, Hamada Y, Kaneko K, Nanjo Y, Kawagoe Y, Toyooka K, Matsuoka K, Takeuchi M, Nakano A, Mitsui T (2009) The rice alpha-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids. Plant Cell 21:2844–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koide T, Ohnishi Y, Horinouchi S (2011) Characterization of recombinant beta-amylases from Oryza sativ. Biosci Biotech Bioch 75:793–796

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Laby RJ, Kim D, Gibson SI (2001) The ram1 mutant of Arabidopsis exhibits severely decreased beta-amylase activity. Plant Physiol 127:1798–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Yu DJ, Kim SJ, Choi D, Lee HJ (2012) Intraspecies differences in cold hardiness, carbohydrate content and beta-amylase gene expression of Vaccinium corymbosum during cold acclimation and deacclimation. Tree Physiol 32:1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Kim SJ, Han SK, An G, Kim SR (2017) A gibberellin-stimulated transcript, OsGASR1, controls seedling growth and alpha-amylase expression in rice. J Plant Physiol 214:116–122

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Kossmann J, Ritte G (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci 10:130–137

    Article  CAS  PubMed  Google Scholar 

  • Lu CA, Ho ThD, Ho SL, Yu SM (2002) Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-amylase gene expression. Plant Cell 14:1963–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv Y, Yang M, Hu D, Yang Z, Ma S, Li X, Xiong L (2017) The OsMYB30 transcription factor suppresses cold tolerance by interacting with a JAZ protein and suppressing beta-amylase expression. Plant Physiol 173:1475–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsui T, Yamaguchi J, Akazawa T (1996) Physicochemical and serological characterization of rice alpha-amylase isoforms and identification of their corresponding genes. Plant Physiol 110:1395–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monroe JD, Preiss J (1990) Purification of a beta-amylase that accumulates in Arabidopsis thaliana mutants defective in starch metabolism. Plant Physiol 94:1033–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monroe JD, Storm AR (2018) Review: the Arabidopsis β-amylase (BAM) gene family: diversity of form and function. Plant Sci 276:163–170

    Article  CAS  PubMed  Google Scholar 

  • Monroe JD, Storm AR, Badley EM, Lehman MD, Platt SM, Saunders LK, Schmitz JM, Torres CE (2014) β-Amylase1 and β-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions. Plant Physiol 166:1748–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monroe JD, Breault JS, Pope LE, Torres CE, Gebrejesus TB, Berndsen CE, Storm AR (2017) Arabidopsis β-amylase2 is a K(+)-requiring, catalytic tetramer with sigmoidal kinetics. Plant Physiol 175:1525–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen MM, Bozonnet S, Seo ES, Motyan JA, Andersen JM, Dilokpimol A, Abou Hachem M, Gyemant G, Naested H, Kandra L, Sigurskjold BW, Svensson B (2009) Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules. Biochemistry 48:7686–7697

    Article  CAS  PubMed  Google Scholar 

  • Ochiai A, Sugai H, Harada K, Tanaka S, Ishiyama Y, Ito K, Tanaka T, Uchiumi T, Taniguchi M, Mitsui T (2014) Crystal structure of alpha-amylase from Oryza sativa: molecular insights into enzyme activity and thermostability. Biosci Biotechnol Biochem 78:989–997

    Article  CAS  PubMed  Google Scholar 

  • Peng T, Zhu X, Duan N, Liu JH (2014) PtrBAM1, a β-amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant, Cell Environ 37:2754–2767

    Article  CAS  Google Scholar 

  • Prlic A, Bliven S, Rose PW, Bluhm WF, Bizon C, Godzik A, Bourne PE (2010) Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics 26:2983–2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian W, Xiao B, Wang L, Hao X, Yue C, Cao H, Wang Y, Li N, Yu Y, Zeng J, Yang Y, Wang X (2018) CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biol 18:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhold H, Soyk S, Simkova K, Hostettler C, Marafino J, Mainiero S, Vaughan CK, Monroe JD, Zeeman SC (2011) Beta-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell 23:1391–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa M, Hilal M, Gonzalez JA, Prado FE (2004) Changes in soluble carbohydrates and related enzymes induced by low temperature during early developmental stages of quinoa (Chenopodium quinoa) seedlings. J Plant Physiol 161:683–689

    Article  CAS  PubMed  Google Scholar 

  • Rubio S, Donoso A, Perez FJ (2014) The dormancy-breaking stimuli “chilling, hypoxia and cyanamide exposure” up-regulate the expression of alpha-amylase genes in grapevine buds. J Plant Physiol 171:373–381

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Somoza I, Martinez M, Abraham Z, Diaz I, Carbonero P (2006) Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds. Plant J 47:269–281

    Article  CAS  PubMed  Google Scholar 

  • Seung D, Thalmann M, Sparla F, Abou Hachem M, Lee SK, Issakidis-Bourguet E, Svensson B, Zeeman SC, Santelia D (2013) Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic alpha-amylase. J Biol Chem 288:33620–33633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin H, Oh Y, Kim D (2015) Differences in cold hardiness, carbohydrates, dehydrins and related gene expressions under an experimental deacclimation and reacclimation in Prunus persica. Physiol Plant 154:485–499

    Article  CAS  PubMed  Google Scholar 

  • Soyk S, Simkova K, Zurcher E, Luginbuhl L, Brand LH, Vaughan CK, Wanke D, Zeeman SC (2014) The enzyme-like domain of Arabidopsis nuclear beta-amylases is critical for DNA sequence recognition and transcriptional activation. Plant Cell 26:1746–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparla F, Costa A, Lo Schiavo F, Pupillo P, Trost P (2006) Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. Plant Physiol 141:840–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol 15:282–292

    Article  CAS  PubMed  Google Scholar 

  • Streb S, Zeeman SC (2012) Starch metabolism in Arabidopsis. Arabidopsis Book 10:e0160

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulpice R, Pyl E-T, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques MC, Von Korff M, Steinhauser MC, Keurentjes JJB, Guenther M, Hoehne M, Selbig J, Fernie AR, Altmann T, Stitt M (2009) Starch as a major integrator in the regulation of plant growth. PNAS 106:10348–10353

    Article  PubMed  PubMed Central  Google Scholar 

  • Thalmann M, Santelia D (2017) Starch as a determinant of plant fitness under abiotic stress. New Phytol 214:943–951

    Article  CAS  PubMed  Google Scholar 

  • Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kölling K, Pfeifhofer HW, Zeeman SC, Santelia D (2016) Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell 28:1860–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vajravijayan S, Pletnev S, Mani N, Pletneva N, Nandhagopal N, Gunasekaran K (2018) Structural insights on starch hydrolysis by plant β-amylase and its evolutionary relationship with bacterial enzymes. Int J Biol Macromol 113:329–337

    Article  CAS  PubMed  Google Scholar 

  • Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F (2011) Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot 62:545–555

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Monroe J, Sjölund RD (1995) Identification and characterization of a phloem-specific beta-amylase. Plant Physiol 109:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, Kong YM, Yue C, Hao XY, Chen L, Ma JQ, Jin JQ, Li X, Yang YJ (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genom 14:415

    Article  CAS  Google Scholar 

  • Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wang P, Li P, Shi C, Zheng F, Jian J, Huang B, Shan D, Shi M, Fang C, Yue Y, Li F, Li D, Wei S, Han B, Jiang C, Yin Y, Xia T, Zhang Z, Bennetzen JL, Zhao S, Wan X (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. pNAS 115:E4151–E4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang JJ, Mao SY, Jiao JY, Zhang D, Zhao Y, Zhao YJ, Zhang LP, Liu YL, Liu BY, Yu Y, Shao SF, Ni DJ, Eichler EE, Gao LZ (2017) The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 10:866–877

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Wang Y, Du J, Li H, Wei B, Wang Y, Li Y, Yu G, Liu H, Zhang J, Liu Y, Hu Y, Huang Y (2017) ZmMYB14 is an important transcription factor involved in the regulation of the activity of the ZmBT1 promoter in starch biosynthesis in maize. FEBS J 284:3079–3099

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Godzik A (2003) Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19 Suppl 2: ii246-255

  • Yu TS, Zeeman SC, Thorneycroft D, Fulton DC, Dunstan H, Lue WL, Hegemann B, Tung SY, Umemoto T, Chapple A, Tsai DL, Wang SM, Smith AM, Chen J, Smith SM (2005) α-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J Biol Chem 280:9773–9779

    Article  CAS  PubMed  Google Scholar 

  • Yue C, Cao H, Wang L, Zhou Y, Hao X, Zeng J, Wang X, Yang Y (2014) Molecular cloning and expression analysis of tea plant aquaporin (AQP) gene family. Plant Physiol Biochem 83:65–76

    Article  CAS  PubMed  Google Scholar 

  • Yue C, Cao HL, Wang L, Zhou YH, Huang YT, Hao XY, Wang YC, Wang B, Yang YJ, Wang XC (2015) Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Mol Biol 88:591–608

    Article  CAS  PubMed  Google Scholar 

  • Yue C, Cao HL, Chen D, Lin HZ, Wang Z, Hu J, Yang GY, Guo YQ, Ye NX, Hao XY (2018) Comparative transcriptome study of hairy and hairless tea plant (Camellia sinensis) shoots. J Plant Physiol 229:41–52

    Article  CAS  PubMed  Google Scholar 

  • Zanella M, Borghi GL, Pirone C, Thalmann M, Pazmino D, Costa A, Santelia D, Trost P, Sparla F (2016) Beta-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress. J Exp Bot 67:1819–1826

    Article  CAS  PubMed  Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    Article  CAS  PubMed  Google Scholar 

  • Zeng L, Zhou Y, Fu X, Mei X, Cheng S, Gui J, Dong F, Tang J, Ma S, Yang Z (2017) Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chem 237:488–498

    Article  CAS  PubMed  Google Scholar 

  • Zeng L, Zhou Y, Fu X, Liao Y, Yuan Y, Jia Y, Dong F, Yang Z (2018) Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. J Agr Food Chem 66:3899–3909

    Article  CAS  Google Scholar 

  • Zhang Q, Li C (2017) Comparisons of copy number, genomic structure, and conserved motifs for α-amylase genes from barley, rice, and wheat. Front Plant Sci 8:1727

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31600555, 31800587), the Natural Science Foundation of Fujian Province (2017J01616), the Major Project of Agricultural Science and Technology in Breeding of Tea Plant Variety in Zhejiang Province (2016C02053-4), the Earmarked Fund for China Agriculture Research System (CARS-19), the Construction of Plateau Discipline of Fujian Province (102/71201801101), and the Fujian Province “2011 Collaborative Innovation Center” Chinese Oolong Tea Industry Innovation Center (Cultivation) special project (J2015-75).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan Yue, Yajun Yang or Xinchao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2019_3171_MOESM1_ESM.tif

Supplementary material 1 Conservation in the tea plant and Arabidopsis BAM proteins of 15 starch-binding active site residues identified in soybean BAM5 (BMY1). Subsites 1–4 refer to the four Glc residues at the nonreducing end of the substrate. Residues in each sequence that differ from the corresponding residues in the soybean BAM are shaded gray (TIFF 1797 kb)

Supplementary material 2 LOGO of the conserved motifs of a AMY and b BAM (TIFF 589 kb)

425_2019_3171_MOESM3_ESM.tif

Supplementary material 3 Structural modeling analysis of CsAMY and CsBAM proteins. The 3-D structures of CsAMY and CsBAM proteins were modeled using SWISS-MODEL server and visualized using PyMol software. a The 3-D structures of three CsAMY proteins. Three domains of domains A, B and C are highlighted with cyan, orange and red colors, respectively. Three catalytically important residues, two carbohydrate-binding sites and activity sites are indicated with red, green and blue colors, respectively. b The 3-D structures of nine CsBAM proteins. The active sites are highlighted with hot pink, and two catalytic residues (Glu186 and Glu380) are indicated by yellow dots in each structure (TIFF 1558 kb)

425_2019_3171_MOESM4_ESM.tif

Supplementary material 4 Expression patterns of CsAMY and CsBAM genes during the postharvest processing of white tea withering. The relative expression levels of target genes were determined at different time points during the postharvest processing of white tea withering using the 2−ΔΔCt method under the control of the CsPTB housekeeping gene. Data are mean ± SE of three independent replicates. Asterisks represent significant differences between withering process and the control according to one-way ANOVA, *P < 0.05, **P < 0.01 (TIFF 310 kb)

425_2019_3171_MOESM5_ESM.tif

Supplementary material 5 Expression patterns of CsAMY and CsBAM genes during the postharvest processing of oolong tea rotation. The relative expression levels of target genes were determined at different time points during the postharvest processing of oolong tea rotation using the 2−ΔΔCt method under the control of the CsPTB housekeeping gene. Data are mean ± SE of three independent replicates. Asterisks represent significant difference between rotating process and the control according to one-way ANOVA, *P < 0.05, **P < 0.01 (TIFF 306 kb)

Supplementary material 6 (DOCX 16 kb)

Supplementary material 7 (DOCX 20 kb)

Supplementary material 8 (DOCX 24 kb)

Supplementary material 9 (DOCX 16 kb)

Supplementary material 10 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, C., Cao, H., Lin, H. et al. Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments. Planta 250, 281–298 (2019). https://doi.org/10.1007/s00425-019-03171-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03171-w

Keywords

Navigation