Skip to main content

Advertisement

Log in

Genetic relationships and diversity analysis in Turkish laurel (Laurus nobilis L.) germplasm using ISSR and SCoT markers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Laurel (Laurus nobilis L.) has been used in the Mediterranean basin since ancient ages. Nowadays, Turkey, Mexico, Portugal, Italy, Spain, France, Algeria, and Morocco use aromatic leaves for commercial purposes, and Turkey is the largest exporter in the world. In this study, molecular characterization, and genetic relationships of 94 Turkish laurel genotypes were determined by ISSR and SCoT markers. The experiment was conducted with 16 ISSR and 10 SCoT markers. While 348 of 373 bands were polymorphic with a 93.3% polymorphism rate, Nei’s genetic distances ranged between 0.17 and 0.70 with 0.39 mean in ISSR. In SCoT, 175 of 227 bands were polymorphic with 77.1% polymorphism rate, and Nei’s genetic distances varied between 0.12 and 0.51. Sufficient genetic diversity determined with diversity parameters consisting of the average Shannon’s information index (ISSR: 0.46, SCoT:0.35), the overall gene diversity (ISSR:0.19, SCoT:0.18), and the effective number of alleles (ISSR:1.52, SCoT:1.38). AMOVA (Analysis of molecular variance) revealed most of the variation was within genotypes (96%). Neighbor-joining algorithms, principal coordinate analysis (PCoA), and model-based structure resulted in harmony and clustered according to the geographical regions and provinces they collected. Genotypes were divided into two groups in ISSR and SCoT with UPGMA clustering resulting in a similar polymorphism distribution. The correlation coefficient (r) determined by marker systems’ Nei’s genetic distances was 0.25. The results of the study put forward resources for advanced breeding techniques, contribute to the preservation of genetic diversity, and management of genetic resources for the breeders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yilmaz A, Ciftci V (2021) Status of laurel plant (Laurus nobilis L.) in Turkey. Eur J Sci Technol 22:325–330

    Google Scholar 

  2. Yilmaz A, Guler E, Soydemir HE, Demirel S, Mollahaliloglu S, Karadeniz T, Ciftci V (2021) Miracle plant: Aronia (Aronia melanocarpa). MAS J Appl Sci 6:83–94. https://doi.org/10.52520/masjaps.20

    Article  Google Scholar 

  3. Srivastava A, Srivastava P, Pandey A, Khanna VK, Pant AB (2019) Phytomedicine: a potential alternative medicine in controlling neurological disorders. In new look to phytomedicine. Academic Press, Cambridge, pp 625–655

    Google Scholar 

  4. Davis PH (1982) Flora of Turkey, vol 7. Edinburg University Press, Edinburg, p 947

    Google Scholar 

  5. Nadeem MA, Aasim M, Kırıcı S, Karık Ü, Nawaz MA, Yılmaz A, Maral H, Khawar KM, Baloch FS (2018) Laurel (Laurus nobilis L.): a less-known medicinal plant to the world with diffusion, genomics, phenomics, and metabolomics for genetic improvement. In: Kumar N (ed) Biotechnological approaches for medicinal and aromatic plants. Springer, Singapore, pp 631–653

    Chapter  Google Scholar 

  6. Onay Ö (2014) Effects of catalyst on pyrolysis of laurel (Laurus nobilis L.) seed in a fixed bed tubular reactor. Chem Eng Trans 37:127–132

    Google Scholar 

  7. Sellami IH, Wannes WA, Bettaieb I, Berrima S, Chahed T, Marzouk B, Limam F (2011) Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chem 126:691–697

    Article  CAS  Google Scholar 

  8. Gulsen O, Mutlu N (2005) Genetic markers used in plant sciences and their utilization. Alatarim 4:27–37

    Google Scholar 

  9. Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoglu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32:261–285. https://doi.org/10.1080/13102818.2017.1400401

    Article  CAS  Google Scholar 

  10. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  Google Scholar 

  11. Jafari SH, Sepehry A, Soltanloo H, Karimian AA (2019) Genetic differentiation between bitter and sweet asafetida plants using ISSR markers. Mol Biol Rep 46:1069–1078. https://doi.org/10.1007/s11033-018-4565-1

    Article  CAS  Google Scholar 

  12. Ghariani S, Amari M, Charfeddine A, Chakroun M, Trifi-Farah N (2019) Molecular and morpho-agronomic characterization among introduced bristle oat collection using ISSR fingerprinting. Agron J 111:156–164. https://doi.org/10.2134/agronj2017.11.0672

    Article  Google Scholar 

  13. De Keyser E, De Riek J, Van Bockstaele E (2009) Discovery of species-wide EST-derived markers in Rhododendron by intron-flanking primer design. Mol Breed 23:171–178

    Article  CAS  Google Scholar 

  14. Collard BC, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86

    Article  CAS  Google Scholar 

  15. Sadhu S, Jogam P, Thampu RK, Abbagani S, Penna S, Peddaboina V (2020) High efficiency plant regeneration and genetic fidelity of regenerants by SCoT and ISSR markers in chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult (PCTOC) 141:465–477

    Article  CAS  Google Scholar 

  16. Sesli M, Yegenoglu ED (2017) Genetic relationships in wild olives (Olea europaea ssp. oleaster) by ISSR and RAPD markers. Biotechnol Biotechnol Equip 31:897–904

    Article  CAS  Google Scholar 

  17. Ali F, Nadeem MA, Habyarimana E, Yılmaz A, Nawaz MA, Khalil IH, Ercisli S, Chung G, Chaudhary HJ, Baloch FS (2020) Molecular characterization of genetic diversity and similarity centers of safflower accessions with ISSR markers. Braz J Bot 43:109–121. https://doi.org/10.1007/s40415-019-00574-7

    Article  Google Scholar 

  18. Agarwal A, Gupta V, Haq SU, Jatav PK, Kothari SL, Kachhwaha S (2019) Assessment of genetic diversity in 29 rose germplasms using SCoT marker. J King Saud Univ-Sci 31:780–788. https://doi.org/10.1016/j.jksus.2018.04.022

    Article  Google Scholar 

  19. Igwe DO, Afiukwa CA, Ubi BE, Ogbu KI, Ojuederie OB, Ude GN (2017) Assessment of genetic diversity in Vigna unguiculata L. (Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers. BMC Genet 18:98. https://doi.org/10.1186/s12863-017-0567-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karık Ü, Nadeem MA, Habyarimana E, Ercişli S, Yildiz M, Yılmaz A, Baloch FS (2019) Exploring the genetic diversity and population structure of Turkish laurel germplasm by the iPBS-retrotransposon marker system. Agronomy 9:647

    Article  Google Scholar 

  21. Mohamed ASH, Ahmed W, Rabia SS, Mourad MM (2016) Implications of morphology and molecular criteria in taxonomy of Lauraceae Juss. Egypt J Exp Biol 12:45–52

    Google Scholar 

  22. Sevindik E (2019) Molecular genetic diversity of some Laurus nobilis L. (Lauraceae) populations grown in The Aegean Region/Turkey. Afs-Adv Food Sci 41:28–31

    CAS  Google Scholar 

  23. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  24. Baloch FS, Alsaleh A, Andeden EE, Hatipoglu R, Nachit M, Ozkan H (2016) High levels of segregation distortion in the molecular linkage map of bread wheat representing West Asia and NorthAfrica region. Turk J Agric For 40:352–364. https://doi.org/10.3906/tar1508-27

    Article  CAS  Google Scholar 

  25. Baloch FS, Alsaleh A, de Miera LES, Hatipoğlu R, Çiftçi V et al (2015) DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochem Syst Ecol 61:244–252. https://doi.org/10.1016/j.bse.2015.06.017

    Article  CAS  Google Scholar 

  26. Yeh TBJ, Yang FC, Boyle RC (2000) Popgen ver 1.32: The user-friendly shareware for population genetic analysis. Molecular biology and biotechnology center. University of Alberta, Alberta

    Google Scholar 

  27. Schliep KP (2011) Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593

    Article  CAS  Google Scholar 

  28. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  29. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  30. Arroyo-García R, Martínez-Zapater JM, Prieto JF, Álvarez-Arbesú R (2001) AFLP evaluation of genetic similarity among laurel populations (Laurus L.). Euphytica 122:155–164

    Article  Google Scholar 

  31. Nemli S, Kianoosh T, Tanyolac MB (2015) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) accessions through retrotransposon-based inter primer binding sites (iPBSs) markers. Turk J Agric For 39:940–948. https://doi.org/10.3906/tar-1505-59

    Article  CAS  Google Scholar 

  32. Gedik A, Ates D, Erdogmus S, Comertpay G, Tanyolac MB, Ozkan H (2017) Genetic diversity of Crocus sativus and its close relative species analyzed by iPBS-retrotransposons. Turk J Agric For 22:243–252. https://doi.org/10.17557/tjfc.357426

    Article  Google Scholar 

  33. Törün B, Sözen E (2018) Determination of the genetic variation among some Turkish rice (Oryza sativa L.) cultivars using ISSR technique. J Anim Plant Sci 28:1766–1773

    Google Scholar 

  34. Golkar P, Mokhtari N (2018) Molecular diversity assessment of a world collection of safflower genotypes by SRAP and SCoT molecular markers. Physiol Mol Biol Plants 24:1261–1271. https://doi.org/10.1007/s12298-018-0545-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kurt C, Arioglu H (2018) Assessment of genetic diversity among Turkish sesame (Sesamum indicum L.) genotypes using ISSR markers. IJAER 4(1):188–199

    Google Scholar 

  36. Etminan A, Pour-Aboughadareh A, Noori A, Ahmadi-Rad A, Shooshtari L, Mahdavian Z, Yousefiazar-Khanian M (2018) Genetic relationships and diversity among wild salvia accessions revealed by ISSR and SCoT markers. Biotechnol Biotechnol Equip 32:610–617. https://doi.org/10.1080/13102818.2018.1447397

    Article  Google Scholar 

  37. Guliyev N, Sharifova S, Ojaghi J, Abbasov M, Akparov Z (2018) Genetic diversity among melon (Cucumis melo L.) accessions revealed by morphological traits and ISSR markers. Turk J Agric For 42:393–401. https://doi.org/10.3906/tar-1707-18

    Article  CAS  Google Scholar 

  38. Camacho Villa TC, Maxted N, Scholten M, Ford-Lloyd B (2006) Defining and identifying crop landraces. Plant Genet Resour 3:373–384

    Article  Google Scholar 

  39. Agarwal T, Gupta AK, Patel AK, Shekhawat NS (2015) Micropropagation and validation of genetic homogeneity of Alhagi maurorum using SCoT, ISSR, and RAPD markers. Plant cell Tissue Organ Cult (PCTOC) 120:313–323. https://doi.org/10.1007/s11240-014-0608-z

    Article  CAS  Google Scholar 

  40. Gogoi B, Wann SB, Saikia SP (2020) Comparative assessment of ISSR, RAPD, and SCoT markers for genetic diversity in Clerodendrum species of North East India. Mol Biol Rep 47:7365–7377. https://doi.org/10.1007/s11033-020-05792-x

    Article  CAS  PubMed  Google Scholar 

  41. Dilipan E, Ramachandran M, Arulbalachandran D (2020) Population genetics and gene flow of the seagrass, Syringodium isoetifolium based on start codon targeted (SCoT) marker from Palk Bay and Chilika Lake India. Meta Gene 26:100774. https://doi.org/10.1016/j.mgene.2020.100774

    Article  Google Scholar 

  42. Tanya P, Taeprayoon P, Hadkam Y, Srinives P (2011) Genetic diversity among Jatropha and Jatropha-related species based on ISSR markers. Plant Mol Biol Rep 29:252–264

    Article  Google Scholar 

  43. Elframawy A, Deif H, El-Bakatoushi R (2016) Genetic variation among fragmented populations of Atriplex halimus L. using start codon targeted (SCoT) and ITS1-5.8 S-ITS2 region markers. Am J Mol Biol 6:101–115. https://doi.org/10.4236/ajmb.2016.62011

    Article  Google Scholar 

  44. Zabet M, Rahimi A, Izanlo A, Alizadeh Z (2019) Investigation of genetic variation in cumin (Cuminum cyminum) ecotypes of Khorasan Provinces using RAPD and ISSR markers. Agric Biotechnol J 11:75–98. https://doi.org/10.22103/jab.2019.12102.1050

    Article  Google Scholar 

  45. Hadipour M, Kazemitabar SK, Yaghini H, Dayani S (2020) Genetic diversity and species differentiation of medicinal plant Persian Poppy (Papaver bracteatum L.) using AFLP and ISSR markers. Ecol Genet Genom 16:100058. https://doi.org/10.1016/j.egg.2020.100058

    Article  Google Scholar 

  46. Ali F, Yılmaz A, Nadeem MA, Habyarimana E, Subaşı I, Nawaz MA, Chaudhary HJ, Shahid MQ, Ercisli S, Zia MAB, Chung G (2019) Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using iPBS-retrotransposon markers. PLoS ONE 14:e0211985. https://doi.org/10.1371/journal.pone.0211985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, Telles MPDC, Bini LM (2013) Mantel test in population genetics. Genet Mol Biol 36:475–485

    Article  Google Scholar 

  48. Pour AH, Karahan F, Ilhan E, Ilçim A, Haliloglu K (2019) Genetic structure and diversity of Adonis L. (Ranunculaceae) populations collected from Turkey by inter-primer binding site (iPBS) retrotransposon markers. Turk J Bot 43:585–596. https://doi.org/10.3906/bot-1810-1

    Article  CAS  Google Scholar 

  49. Solouki M, Mehdikhani H, Zeinali H, Emamjomeh AA (2008) Study of genetic diversity in Chamomile (Matricaria chamomilla) based on morphological traits and molecular markers. Sci Hortic 117:281–287

    Article  CAS  Google Scholar 

  50. Singh SK, Chhajer S, Pathak R, Bhatt RK, Kalia RK (2017) Genetic diversity of Indian jujube cultivars using SCoT, ISSR, and rDNA markers. Tree Genet Genomes 13:12

    Article  Google Scholar 

Download references

Acknowledgements

This study was produced from the doctoral dissertation number 620825 conducted at the Bolu Abant İzzet Baysal University Institute of Science. The authors express their gratitude to the BAP (Institution of Scientific Research Projects—Bolu Abant Izzet Baysal University) for their support. The authors are thankful to Associate Prof. Dr. Faheem Shahzad BALOCH, Assistant Prof. Dr. Muhammad Azhar NADEEM, and Dr. Emrah GULER for assistance in the experiments.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AY. Data curation: AY. Methodology: AY. Resource: AY. Software: AY. Supervision: VC. Validation: VC. Writing—original draft: AY. Writing—review & editing: VC.

Corresponding author

Correspondence to Abdurrahim Yilmaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The whole or part of this article has not been sent/published in any other journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 246 kb)

Supplementary file2 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, A., Ciftci, V. Genetic relationships and diversity analysis in Turkish laurel (Laurus nobilis L.) germplasm using ISSR and SCoT markers. Mol Biol Rep 48, 4537–4547 (2021). https://doi.org/10.1007/s11033-021-06474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06474-y

Keywords

Navigation