Skip to main content
Log in

Identification and functional prediction of long non-coding RNAs of rice (Oryza sativa L.) at reproductive stage under salinity stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Salinity adversely affects the yield and growth of rice (Oryza sativa L.) plants severely, particularly at reproductive stage. Long non-coding RNAs (lncRNAs) are key regulators of diverse molecular and cellular processes in plants. Till now, no systematic study has been reported for regulatory roles of lncRNAs in rice under salinity at reproductive stage. In this study, total 80 RNA-seq data of Horkuch (salt-tolerant) and IR-29 (salt-sensitive) genotypes of rice were used and found 1626 and 2208 transcripts as putative high confidence lncRNAs, among which 1529 and 2103 were found to be novel putative lncRNAs in root and leaf tissue respectively. In Horkuch and IR-29, 14 and 16 lncRNAs were differentially expressed in root tissue while 18 and 63 lncRNAs were differentially expressed in leaf tissue. Interaction analysis among the lncRNAs, miRNAs and corresponding mRNAs indicated that these modules are involved in different biochemical pathways e.g. phenyl propanoid pathway during salinity stress in rice. Interestingly, two differentially expressed lncRNAs such as TCONS_00008914 and TCONS_00008749 were found as putative target mimics of known rice miRNAs. This study indicates that lncRNAs are involved in salinity adaptation of rice at reproductive stage through certain biochemical pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chowrasia S, Panda AK, Rawal HC, Kaur H, Mondal TK (2018) Identification of jumonjiC domain containing gene family among the Oryza species and their expression analysis in FL478, a salt tolerant rice genotype. Plant Physiol Biochem 130:43–53

    Article  CAS  PubMed  Google Scholar 

  2. Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852

    Article  CAS  Google Scholar 

  3. Ganie SA, Dey N, Mondal TK (2016) Promoter methylation regulates the abundance of osa-miR393a in contrasting rice genotypes under salinity stress. Funct Integr Genomics 16:1–11

    Article  CAS  PubMed  Google Scholar 

  4. Ganie SA, Mondal TK (2015) Genome-wide development of novel miRNA-based microsatellite markers of rice (Oryza sativa) for genotyping applications. Mol Breed 35:51–60

    Article  CAS  Google Scholar 

  5. Gay F, Maraval B, Roques S, Gunata Z, Boulanger R, Audeber A, Mestres C (2010) Effect of salinity on yield and 2-acetyl-1-pyrroline content in the grains of three fragrant rice cultivars (Oryza sativa L.) in Camargue (France). Field Crops Res 117:154–160

    Article  Google Scholar 

  6. Ahmadizadeh M, Vispo NA, Calapit-Palao CDO, Pangaan ID, Viña CD, Singh RK (2016) Reproductive stage salinity tolerance in rice: a complex trait to phenotype. Indian J Plant Physiol 21:528–536

    Article  Google Scholar 

  7. Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193:651–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10:637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhatia G, Goyal N, Sharma S, Upadhyay SK, Singh K (2017) Present scenario of long non-coding RNAs in plants. Non coding RNA 3:16–23

    Article  PubMed Central  CAS  Google Scholar 

  12. Di C, Yuan J, Wu Y, Li J, Lin H, Hu L, Zhang T, Qi Y, Gerstein MB, Guo Y, Lu ZJ (2014) Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J 80:848–861

    Article  CAS  PubMed  Google Scholar 

  13. Razzaque S, Haque T, Elias SM, Rahman MS, Biswas S, Schwartz S, Ismail AM, Walia H, Juenger TE, Seraj ZI (2017) Reproductive stage physiological and transcriptional responses to salinity stress in reciprocal populations derived from tolerant (Horkuch) and susceptible (IR29) rice. Sci Rep 7:46138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-seqreveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kong L, Zhang Y, Ye Z, Liu X, Zhao S, Wei L, Gao G (2007) CPC: assess the protein- coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  19. Wucher V, Legeai F, Hédan B, Rizk G, Lagoutte L, Leeb T, Jagannathan V, Cadieu E, David A, Lohi H, Cirera S, Fredholm M, Botherel N, Leegwater PAJ, Le Béguec C, Fieten H, Johnson J, Alföldi J, André C, Lindblad-Toh K, Hitte C, Derrien T (2017) FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res 45:e57

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun X, Dong B, Yin L, Zhang R, Du W, Liu D, Shi N, Li A, Liang Y, Mao L (2013) PMTED: a plant microRNA target expression database. BMC Bioinform 14:174

    Article  CAS  Google Scholar 

  22. Gurjar AKS, Panwar AS, Gupta R, Mantri SS (2016) PmiRExAt: plant miRNA expression atlas database and web applications. Database 2016:baw060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mondal TK, Ganie SA, Rana MK, Sharma TR (2014) Genome-wide analysis of zinc transporter genes of maize (Zea mays). Plant Mol Biol Rep 32:605–616

    Article  CAS  Google Scholar 

  25. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  26. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Han Z, Guo Q, Liu Y, Zheng Y, Wu F, Jin W (2014) Identification of maize long non-coding RNAs responsive to drought stress. PLoS ONE 9:e98958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chen J, Quan M, Zhang D (2015) Genome-wide identification of novel long non- coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta 241:125–143

    Article  CAS  PubMed  Google Scholar 

  29. Tang W, Zheng Y, Dong J, Yu J, Yue J, Liu F, Guo X, Huang S, Wisniewski M, Sun J, Niu X, Ding J, Liu J, Fei Z, Liu Y (2016) Comprehensive transcriptome profiling reveals long noncoding RNA expression and alternative splicing regulation during fruit development and ripening in kiwifruit (Actinidia chinensis). Front Plant Sci 7:335

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chettoor AM, Givan SA, Cole RA, Fowler JE, Evans MMS, Scanlon MJ, Yu J, Schnable PS, Timmermans MCP, Springer NM, Muehlbauer GJ (2014) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15:R40

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, Li QF, Qu LH, Shu WS, Chen YQ (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15:512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lekklar C, Pongpanich M, Suriya-Arunroj D, Chinpongpanich A, Tsai H, Comai L, Chadchawan S, Buaboocha T (2019) Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. BMC Genomics 20:76

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genomics 11:293–305

    Article  CAS  PubMed  Google Scholar 

  34. Singh A, Giri J, Kapoor S, Tyagi AK, Pandey GK (2010) Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics 11:1–18

    Article  CAS  Google Scholar 

  35. Joshi RK, Megha S, Basu U, Rahman MH, Kav NNV (2016) Genome wide identification and functional prediction of long non-coding rnas responsive to Sclerotinia sclerotiorum Infection in Brassica napus. PLoS ONE 11:e0158784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Li S, Yu X, Lei N, Cheng Z, Zhao P, He Y, Wang W, Peng M (2017) Corrigendum: genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci Rep 7:45981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li H, Wang Y, Chen M, Xiao P, Hu C, Zeng Z, Hu Z (2016) Genome-wide long non-coding RNA screening, identification and characterization in a model microorganism Chlamydomonas reinhardtii. Sci Rep 6:34109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang T, Liu M, Zhao M, Chen R, Zhang W (2015) Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol 15:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ganie SA, Pani DR, Mondal TK (2017) Genome-wide analysis of DUF221 domain-containing gene family in Oryza species and identification of its salinity stress-responsive members in rice. PLoS ONE 12:e0182469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Jangam AP, Pathak RR, Raghuram N (2016) Microarray analysis of rice d1 (RGA1) mutant reveals the potential role of G-protein alpha subunit in regulating multiple abiotic stresses such as drought, salinity, heat, and cold. Front Plant Sci 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen X, Sun S, Liu F, Shen E, Liu L, Ye C, Xiao B, Timko MP, Zhu QH, Fan L, Cao P (2019) A transcriptomic profile of topping responsive non-coding RNAs in tobacco roots. (Nicotiana tabacum). BMC Genomics 20:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  42. Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grandér D, Morris KV (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gupta PK (2014) Competing endogenous RNA (ceRNA): a new class of RNA working as miRNA sponges. Curr Sci 106:823–830

    CAS  Google Scholar 

  44. Fan C, Hao Z, Yan J, Li G (2015) Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize. BMC Genomics 16:793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mondal TK, Ganie SA, Debnath AB (2015) Identification of novel and conserved miRNAs from extreme halophyte, Oryza coarctata, a wild relative of rice. PLoS ONE 10:e0140675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452

    Article  CAS  PubMed Central  Google Scholar 

  47. Ahmed IM, Cao F, Han Y, Nadira UA, Zhang G, Wu F (2013) Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chem 141:2743–2750

    Article  CAS  PubMed  Google Scholar 

  48. Rossi L, Borghi M, Francini A, Lin X, Xie DY, Sebastiani L (2016) Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). J Plant Physiol 204:8–15

    Article  CAS  PubMed  Google Scholar 

  49. Valifard M, Mohsenzadeh S, Niazi A, Moghadam A (2015) Phenylalanine ammonia lyase isolation and functional analysis of phenylpropanoid pathway under salinity stress in’Salvia’species. Aust J Crop Sci 9:656–665

    CAS  Google Scholar 

  50. Dehghan S, Sadeghi M, Pöppel A, Fischer R, Lakes-Harlan R, Kavousi HR, Vilcinskas A, Rahnamaeian M (2014) Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius. Biosci Rep 34:e00114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Indian Council of Agricultural Research, New Delhi for financial Assistance and Director, ICAR-National Institute for Plant Biotechnology, New Delhi for providing the facility.

Funding

The research was funded by ICAR, New Delhi through in-house funding.

Author information

Authors and Affiliations

Authors

Contributions

TKM: conceived and designed the experiment, PJ did major data analysis and wrote paper, SH performed raw data analysis, HD helped in data analysis. JN performed wet lab validation of data and DSB, TKM and TRS helped in paper writing.

Corresponding author

Correspondence to Tapan Kumar Mondal.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships or non-financial that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2021_6246_MOESM1_ESM.tif

Supplementary information 1 Fig. S1 Sample correlation matrix of lncRNAs, A) Horkuch root, B) IR-29 root, C) Horkuch leaf, D) IR-29 leaf. (TIF 41541 kb)

11033_2021_6246_MOESM2_ESM.tif

Supplementary information 2 Fig S2 Principal component analysis of lncRNA in control and stress conditions, A) Horkuch root, B) Horkuch leaf, C) IR-29 root, D) IR-29 leaf. (TIF 101178 kb)

11033_2021_6246_MOESM3_ESM.tif

Supplementary information 3 Fig. S3: The heat maps of differentially expressed lncRNAs A) Horkuch root B) IR-29 root tissue, C) Horkuch leaf, D) IR-29 leaf tissue. (TIF 36136 kb)

11033_2021_6246_MOESM4_ESM.tif

Supplementary information 4 Fig. S4: Volcano plot showing Pairwise comparisons of transcript abundance in A) IR-29 root, B) IR-29 leaf, C) Horkuch leaf, D) Horkuch root. Differentially expressed lncRNAs with FDR <0.05 are red coloured dots while black coloured dot represents non-significant differentially expressed lncRNA (TIF 18037 kb)

11033_2021_6246_MOESM5_ESM.tif

Supplementary information 5 Fig.S5: MA plot of differentially expressed lncRNAs in leaf tissue of Horkuch A), IR-29 B) and root tissue of Horkuch C), IR-29 D). Differentially expressed lncRNAs with FDR <0.05 are coloured red. (TIF 18645 kb)

11033_2021_6246_MOESM6_ESM.tif

Supplementary information 6 Fig. S6 Distribution patterns of identified lncRNAs on chromosomes, A) Leaf tissue, B) Root tissue. (TIF 30594 kb)

Supplementary information 7 Fig. S7 Length distribution of lncRNAs of A) leaf and B) root. (TIF 39392 kb)

Supplementary information 8 Fig. S8 Alignment of the miRNAs and their target lncRNAs as decoy. (TIF 64504 kb)

11033_2021_6246_MOESM9_ESM.tif

Supplementary information 9 Fig. S9 Gene ontology annotation of mRNA present in lncRNA- miRNA-mRNA interaction module. (TIF 21930 kb)

Supplementary information 10 (XLS 38 kb)

Supplementary information 11 (XLS 20 kb)

Supplementary information 12 (XLSX 207 kb)

Supplementary information 13 (XLSX 175 kb)

Supplementary information 14 (XLSX 52 kb)

Supplementary information 15 (XLS 43 kb)

Supplementary information 16 (XLSX 4624 kb)

Supplementary information 17 (XLS 200 kb)

Supplementary information 18 (XLSX 4624 kb)

Supplementary information 19 (XLS 746 kb)

Supplementary information 20 (XLSX 6448 kb)

Supplementary information 21 (XLS 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Hussian, S., Nishad, J. et al. Identification and functional prediction of long non-coding RNAs of rice (Oryza sativa L.) at reproductive stage under salinity stress. Mol Biol Rep 48, 2261–2271 (2021). https://doi.org/10.1007/s11033-021-06246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06246-8

Keywords

Navigation