Skip to main content
Log in

Tissue culture-induced DNA methylation in crop plants: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Plant tissue culture techniques have been extensively employed in commercial micropropagation to provide year-round production. Tissue culture regenerants are not always genotypically and phenotypically similar. Due to the changes in the tissue culture microenvironment, plant cells are exposed to additional stress which induces genetic and epigenetic instabilities in the regenerants. These changes lead to tissue culture-induced variations (TCIV) which are also known as somaclonal variations to categorically specify the inducing environment. TCIV includes molecular and phenotypic changes persuaded in the in vitro culture due to continuous sub-culturing and tissue culture-derived stress. Epigenetic variations such as altered DNA methylation pattern are induced due to the above-mentioned factors. Reportedly, alteration in DNA methylation pattern is much more frequent in the plant genome during the tissue culture process. DNA methylation plays an important role in gene expression and regulation of plant development. Variants originated in tissue culture process due to heritable methylation changes, can contribute to intra-species phenotypic variation. Several molecular techniques are available to detect DNA methylation at different stages of in vitro culture. Here, we review the aspects of TCIV with respect to DNA methylation and its effect on crop improvement programs. It is anticipated that a precise and comprehensive knowledge of molecular basis of in vitro-derived DNA methylation will help to design strategies to overcome the bottlenecks of micropropagation system and maintain the clonal fidelity of the regenerants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  CAS  PubMed  Google Scholar 

  2. Debnath SC (2018) Thidiazuron in micropropagation of small fruits. In: Ahmad N, Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator. Springer Nature Singapore Pte Ltd, Singapore, pp 139–158. https://doi.org/10.1007/978-981-10-8004-3_6

    Chapter  Google Scholar 

  3. Larkin PJ, Scowcroft W (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  4. Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166. https://doi.org/10.1023/A:1004124519479

    Article  CAS  Google Scholar 

  5. Springer NM (2013) Epigenetics and crop improvement. Trends Genet 29:241–247. https://doi.org/10.1016/j.tig.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  6. Jain SM (1998) Plant biotechnology and mutagenesis for sustainable crop improvement. In: Behl RK, Singh DK, Lodhi GP (eds) Crop improvement for stress tolerance. CCSHAU, Hissar & MMB, New Delhi, India, pp 218–232

  7. Peredo EL, Revilla MA, Arroyo-García R (2006) Assessment of genetic and epigenetic variation in hop plants regenerated from sequential subcultures of organogenic calli. J Plant Physiol 163:1071–1079

    Article  CAS  PubMed  Google Scholar 

  8. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  9. Lukens LN, Zhan S (2007) The plant genome's methylation status and response to stress: implications for plant improvement. Curr Opin Plant Biol 10:317–322

    Article  CAS  PubMed  Google Scholar 

  10. Kaeppler SM, Phillips RL (1993) Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci 90:8773–8776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  12. Park SY, Murthy HN, Chakrabarthy D, Paek KY (2009) Detection of epigenetic variation in tissue-culture-derived plants of Doritaenopsis by methylation-sensitive amplification polymorphism (MSAP) analysis. In Vitro Cell Dev Biol Plant 45:104–108

    Article  CAS  Google Scholar 

  13. Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci 93:8449–8454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Springer NM, Schmitz RJ (2017) Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet 18:563. https://doi.org/10.1038/nrg.2017.45

    Article  CAS  PubMed  Google Scholar 

  15. Fulneček J, Kovařík A (2014) How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? BMC Genet 15:2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219 http://www.nature.com/nature/journal/v452/n7184/suppinfo/nature06745_S1.html

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li R, Hu F, Li B, Zhang Y, Chen M, Fan T, Wang T (2020) Whole genome bisulfite sequencing methylome analysis of mulberry (Morus alba) reveals epigenome modifications in response to drought stress. Sci Rep 10:8013. https://doi.org/10.1038/s41598-020-64975-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaufmann K, Muino JM, Osteras M, Farinelli L, Krajewski P, Angenent GC (2010) Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat Protoc 5:457–472. https://doi.org/10.1038/nprot.2009.244

    Article  CAS  PubMed  Google Scholar 

  19. Wang C, Xu J, Zhang D, Wilson ZA, Zhang D (2010) An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data. BMC Bioinf 11:81–81. https://doi.org/10.1186/1471-2105-11-81

    Article  CAS  Google Scholar 

  20. Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smýkal P, Valledor L, Rodriguez R, Griga M (2007) Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep 26:1985–1998

    Article  PubMed  Google Scholar 

  22. Renau-Morata B, Nebauer SG, Arrillaga I, Segura J (2005) Assessments of somaclonal variation in micropropagated shoots of Cedrus: consequences of axillary bud breaking. Tree Genet Genomes 1:3–10

    Article  Google Scholar 

  23. Karim R, Nuruzzaman M, Khalid N, Harikrishna JA (2016) Importance of DNA and histone methylation in in vitro plant propagation for crop improvement: a review. Ann Appl Biol 169:1–16. https://doi.org/10.1111/aab.12280

    Article  CAS  Google Scholar 

  24. Steward FC, Ammirato PV, Mapes MO (1970) Growth and development of totipotent cells some problems, procedures, and perspectives. Ann Bot 34:761–787

    Article  CAS  Google Scholar 

  25. Us-Camas R, Rivera-Solís G, Duarte-Aké F, De-la-Peña C (2014) In vitro culture: an epigenetic challenge for plants. Plant Cell Tissue Organ Cult 118:187–201

    Article  CAS  Google Scholar 

  26. Vidal J, Rama J, Taboada L, Martin C, Ibanez M, Segura A, González-Benito M (2009) Improved somatic embryogenesis of grapevine (Vitis vinifera) with focus on induction parameters and efficient plant regeneration. Plant Cell Tissue Organ Cult 96:85

    Article  Google Scholar 

  27. Sripaoraya S, Marchant R, Power JB, Davey MR (2003) Plant regeneration by somatic embryogenesis and organogenesis in commercial pineapple (Ananas comosus L.). In Vitro Cell Dev Biol Plant 39:450–454

    Article  Google Scholar 

  28. Santana-Buzzy N, Canto-Flick A, Barahona-Pérez F, del Carmen Montalvo-Peniche M, Zapata-Castillo PY, Solís-Ruiz A, Zaldívar-Collí A, Gutiérrez-Alonso O, de Lourdes Miranda-Ham M (2005) Regeneration of habanero pepper (Capsicum chinense Jacq.) via organogenesis. HortScience 40:1829–1831

    Article  Google Scholar 

  29. Biswas M, Dutt M, Roy U, Islam R, Hossain M (2009) Development and evaluation of in vitro somaclonal variation in strawberry for improved horticultural traits. Sci Hortic 122:409–416

    Article  CAS  Google Scholar 

  30. Chakrabarty D, Yu K-W, Paek KY (2003) Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Sci 165:61–68

    Article  CAS  Google Scholar 

  31. Ghosh A, Hossain MM, Sharma M (2014) Mass propagation of Cymbidium giganteum Wall. ex Lindl. using in vitro seedlings. Indian J Exp Biol 52:905–911

    PubMed  Google Scholar 

  32. Debnath SC (2014) Bioreactor-induced adventitious shoot regeneration affects genotype-dependent morphology but maintains clonal fidelity in red raspberry. In Vitro Cell Dev Biol Plant 50:777–788. https://doi.org/10.1007/s11627-014-9632-2

    Article  CAS  Google Scholar 

  33. Ghosh A, Igamberdiev AU, Debnath SC (2018) Thidiazuron-induced somatic embryogenesis and changes of antioxidant properties in tissue cultures of half-high blueberry plants. Sci Rep 8:16978. https://doi.org/10.1038/s41598-018-35233-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karp A (1994) Origins, causes and uses of variation in plant tissue cultures. In: Plant cell and tissue culture. Kluwer, Dordrecht, pp 139–151

    Chapter  Google Scholar 

  35. Bairu MW, Aremu AO, Staden J (2010) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173. https://doi.org/10.1007/s10725-010-9554-x

    Article  CAS  Google Scholar 

  36. Braun AC (1959) A demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single-cell origin. Proc Natl Acad Sci 45:932–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Katiyar RK, Chopra VL (1995) A somaclone of Brassica juncea is processed into a variety and is released for commercial cultivation in India. Cruciferae Newsl 17:92–93

    Google Scholar 

  38. Ahloowalia BS (1986) Limitations to the use of somaclonal variation in crop improvement. In: Somaclonal variations and crop improvement. Springer, pp 14–27

  39. Breiman A, Rotem-Abarbanell D, Karp A, Shaskin H (1987) Heritable somaclonal variation in wild barley (Hordeum spontaneum). Theor Appl Genet 74:104–112

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Lang Z, Zhu JK (2018) Dynamics and function of DNA methylation in plants. Nat Rev 19:489–506

    Article  CAS  Google Scholar 

  41. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bednarek PT, Orłowska R (2020) Plant tissue culture environment as a switch-key of (epi) genetic changes. Plant Cell Tissue Organ Cult 140:245–257

    Article  Google Scholar 

  43. Zhang H, Zhu J-K (2011) RNA-directed DNA methylation. Curr Opin Plant Biol 14:142–147. https://doi.org/10.1016/j.pbi.2011.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gallego-Bartolomé J (2020) DNA methylation in plants: mechanisms and tools for targeted manipulation. New Phytol 227:38–44

    Article  PubMed  Google Scholar 

  45. Cuerda-Gil D, Slotkin RK (2016) Non-canonical RNA-directed DNA methylation. Nat Plants 2:1–8

    Article  Google Scholar 

  46. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61

    Article  CAS  PubMed  Google Scholar 

  47. Lister R, Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536. https://doi.org/10.1016/j.cell.2008.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wassenegger M, Heimes S, Riedel L, Sänger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576. https://doi.org/10.1016/0092-8674(94)90119-8

    Article  CAS  PubMed  Google Scholar 

  49. He XJ, Chen T, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21:442–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  CAS  PubMed  Google Scholar 

  51. Miguel C, Marum L (2011) An epigenetic view of plant cells cultured: somaclonal variation and beyond. J Exp Bot 62:3713–3725. https://doi.org/10.1093/jxb/err155

    Article  CAS  PubMed  Google Scholar 

  52. Chandler VL (2010) Paramutation’s properties and puzzles. Science 330:628–629

    Article  CAS  PubMed  Google Scholar 

  53. Sidorenko LV, Peterson T (2001) Transgene-induced silencing identifies sequences involved in the establishment of paramutation of the maize p1 gene. Plant Cell 13:319–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stam M, Belele C, Dorweiler JE, Chandler VL (2002) Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev 16:1906–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soppe WJJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJM (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802

    Article  CAS  PubMed  Google Scholar 

  56. Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952 http://www.nature.com/ng/journal/v38/n8/suppinfo/ng1841_S1.html

    Article  CAS  PubMed  Google Scholar 

  57. Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138 http://www.nature.com/nature/journal/v461/n7267/suppinfo/nature08498_S1.html

    Article  CAS  PubMed  Google Scholar 

  58. Vaughn MW, Tanurdžić M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:e174. https://doi.org/10.1371/journal.pbio.0050174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Berdasco M, Alcázar R, García-Ortiz MV, Ballestar E, Fernández AF, Roldán-Arjona T, Tiburcio AF, Altabella T, Buisine N, Quesneville H (2008) Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells. PLoS One 3:e3306

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shen X, De Jonge J, Forsberg SK, Pettersson ME, Sheng Z, Hennig L, Carlborg Ö (2014) Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLoS Genet 10:e1004842

    Article  PubMed  PubMed Central  Google Scholar 

  61. De-la-Pena C, Nic-Can G, Ojeda G, Herrera-Herrera JL, Lopez-Torres A, Wrobel K, Robert-Diaz ML (2012) KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp. BMC Plant Biol 12:203. https://doi.org/10.1186/1471-2229-12-203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Phillips RL, Kaeppler SM, Peschke VM (1990) Do we understand somaclonal variation? In: Progress in plant cellular and molecular biology. Kluwer, Dordrecnt, pp 131–141

    Chapter  Google Scholar 

  63. Stelpflug SC, Eichten SR, Hermanson PJ, Springer NM, Kaeppler SM (2014) Consistent and heritable alterations of dna methylation are induced by tissue culture in maize. Genetics 198:209. https://doi.org/10.1534/genetics.114.165480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brown PTH, Kyozuka J, Sukekiyo Y, Kimura Y, Shimamoto K, Lörz H (1990) Molecular changes in protoplast-derived rice plants. Mol Gen Genet 223:324–328

    Article  CAS  PubMed  Google Scholar 

  65. Müller E, Brown PTH, Hartke S, Lörz H (1990) DNA variation in tissue-culture-derived rice plants. Theor Appl Genet 80:673–679

    Article  PubMed  Google Scholar 

  66. Stroud H, Ding B, Simon SA, Feng S, Bellizzi M, Pellegrini M, Wang G-L, Meyers BC, Jacobsen SE (2013) Plants regenerated from tissue culture contain stable epigenome changes in rice. eLife 2:e00354

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ghosh A, Igamberdiev A, Debnath S (2017) Detection of DNA methylation pattern in thidiazuron-induced blueberry callus using methylation-sensitive amplification polymorphism. Biol Plant 61:511–519

    Article  CAS  Google Scholar 

  68. Jain SM, Brar DS, Ahloowalia B (2013) Somaclonal variation and induced mutations in crop improvement, vol 32. Springer Science & Business Media

  69. Miura K, Ikeda M, Matsubara A, Song X-J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549 http://www.nature.com/ng/journal/v42/n6/suppinfo/ng.592_S1.html

    Article  CAS  PubMed  Google Scholar 

  70. Ong-Abdullah M, Ordway JM, Jiang N, Ooi S-E, Kok S-Y, Sarpan N, Azimi N, Hashim AT, Ishak Z, Rosli SK (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525(7570):533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  72. Cassells A, Curry R (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Cult 64:145–157. https://doi.org/10.1023/A:1010692104861

    Article  CAS  Google Scholar 

  73. Sahijram L, Soneji JR, Bollamma KT (2003) Analyzing somaclonal variation in micropropagated bananas (Musa spp.). In Vitro Cell Dev Biol Plant 39:551–556

    Article  Google Scholar 

  74. Duncan RR (1996) Tissue culture-induced variation and crop improvement. Adv Agron 58:201–240

    Article  Google Scholar 

  75. Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:1–18

    Article  Google Scholar 

  76. Pijut PM, Beasley RR, Lawson SS, Palla KJ, Stevens ME, Wang Y (2012) In vitro propagation of tropical hardwood tree species—A review (2001–2011). Propag Ornamental Plants 12:25–51

    Google Scholar 

  77. George EF, Hall MA, De Klerk G-J (2007) Plant propagation by tissue culture: the background, vol 1. Springer Science & Business Media

  78. Fraga MF, Cañal M, Rodríguez R (2002) Phase-change related epigenetic and physiological changes in Pinus radiata D. Don. Planta 215:672–678

    Article  CAS  PubMed  Google Scholar 

  79. Baurens FC, Nicolleau J, Legavre T, Verdeil J-L, Monteuuis O (2004) Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker. Tree Physiol 24:401–407

    Article  CAS  PubMed  Google Scholar 

  80. Skirvin RM, McPheeters KD, Norton M (1994) Sources and frequency of somaclonal variation. HortScience 29:1232–1237

    Article  Google Scholar 

  81. Zayova E, Vassilevska-Ivanova R, Kraptchev B, Stoeva D (2010) Somaclonal variations through indirect organogenesis in eggplant (Solanum melongena L.). Biodivers Conserv 3:1–5

    Google Scholar 

  82. Huang H, Han S, Wang Y, Zhang X, Han Z (2012) Variations in leaf morphology and DNA methylation following in vitro culture of Malus xiaojinensis. Plant Cell Tissue Organ Cult 111:153–161. https://doi.org/10.1007/s11240-012-0179-9

    Article  CAS  Google Scholar 

  83. Peschke VM, Philips RL (1992) Genetic implications of somaclonal variation in plants. Adv Genet 30:41–75

    Article  CAS  Google Scholar 

  84. Bayliss MW (1980) Chromosomal variation in plant tissues in culture. Int Rev Cytol Suppl 11:113–144

    Google Scholar 

  85. Morao AK, Bouyer D, Roudier F (2016) Emerging concepts in chromatin-level regulation of plant cell differentiation: timing, counting, sensing and maintaining. Curr Opin Plant Biol 34:27–34

    Article  CAS  PubMed  Google Scholar 

  86. d'Amato F (1975) The problem of genetic stability in plant tissue and cell cultures. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, pp 338–348

    Google Scholar 

  87. Giménez C, García E, Enrech NX, Blanca I (2001) Somaclonal variation in banana: cytogenetic and molecular characterization of the somaclonal variant cien BTA-03. In Vitro Cell Dev Biol Plant 37:217–222. https://doi.org/10.1007/s11627-001-0038-6

    Article  Google Scholar 

  88. Gesteira AS, Otoni WC, Barros EG, Moreira MA (2002) RAPD-based detection of genomic instability in soybean plants derived from somatic embryogenesis. Plant Breed 121:269–271

    Article  CAS  Google Scholar 

  89. Jin S, Mushke R, Zhu H, Tu L, Lin Z, Zhang Y, Zhang X (2008) Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Rep 27:1303–1316

    Article  CAS  PubMed  Google Scholar 

  90. Bouman H, De Klerk GJ (2001) Measurement of the extent of somaclonal variation in begonia plants regenerated under various conditions. comparison of three assays. Theor Appl Genet 102:111–117. https://doi.org/10.1007/s001220051625

    Article  CAS  Google Scholar 

  91. LoSchiavo F, Pitto L, Giuliano G, Torti G, Nuti-Ronchi V, Marazziti D, Vergara R, Orselli S, Terzi M (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331. https://doi.org/10.1007/BF00305823

    Article  CAS  PubMed  Google Scholar 

  92. Bairu MW, Fennell CW, van Staden J (2006) The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. ‘Z elig’). Sci Hortic 108:347–351. https://doi.org/10.1016/j.scienta.2006.01.039

    Article  CAS  Google Scholar 

  93. Rodrigues PHV, Tulmann Neto A, Cassieri Neto P, Mendes BMJ (1997) Influence of the number of subcultures on somaclonal variation in micropropagated nanicao (Musa spp., AAA Group). Acta Hortic 490:469–474

    Google Scholar 

  94. Clarindo WR, Carvalho CR, Mendonça MAC (2012) Ploidy instability in long-term in vitro cultures of Coffea arabica L. monitored by flow cytometry. Plant Growth Regul 68:533–538. https://doi.org/10.1007/s10725-012-9740-0

    Article  CAS  Google Scholar 

  95. Farahani F, Yari R, Masoud S (2011) Somaclonal variation in Dezful cultivar of olive (Oleaeuropaea subsp. europaea). Genet Conserv 40:216–233

    Google Scholar 

  96. Wang QM, Wang YZ, Sun LL, Gao FZ, Sun W, He J, Gao X, Wang L (2012) Direct and indirect organogenesis of Clivia miniata and assessment of DNA methylation changes in various regenerated plantlets. Plant Cell Rep 31:1283–1296. https://doi.org/10.1007/s00299-012-1248-6

    Article  CAS  PubMed  Google Scholar 

  97. Hao YJ, Deng XX (2003) Genetically stable regeneration of apple plants from slow growth. Plant Cell Tissue Organ Cult 72:253–260

    Article  CAS  Google Scholar 

  98. Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS (2011) DNA Methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet 7:e1002243. https://doi.org/10.1371/journal.pgen.1002243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nic-Can GI, Lopez-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas VM, Rojas-Herrera R, De-la-Pena C (2013) New insights into somatic embryogenesis: leafy cotyledon1, baby boom1 and WUSCHEL-related homeobox4 are epigenetically regulated in Coffea canephora. PLoS One 8:e72160. https://doi.org/10.1371/journal.pone.0072160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kwiatkowska A, Zebrowski J, Oklejewicz B, Czarnik J, Halibart-Puzio J, Wnuk M (2014) The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation. Biochem Biophys Res Commun 447:285–291. https://doi.org/10.1016/j.bbrc.2014.03.141

    Article  CAS  PubMed  Google Scholar 

  101. Fraga HPF, Vieira LN, Caprestano CA, Steinmacher DA, Micke GA, Spudeit DA, Pescador R, Guerra MP (2012) 5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels. Plant Cell Rep 31:2165–2176. https://doi.org/10.1007/s00299-012-1327-8

    Article  CAS  PubMed  Google Scholar 

  102. Ji L, Mathioni SM, Johnson S, Tucker D, Bewick AJ, Do Kim K, Daron J, Slotkin RK, Jackson SA, Parrott WA, Meyers BC, Schmitz RJ (2019) Genome-wide reinforcement of dna methylation occurs during somatic embryogenesis in soybean. Plant Cell 31:2315. https://doi.org/10.1105/tpc.19.00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Santos D, Fevereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula. Plant Cell Tissue Organ Cult 70:155–161

    Article  CAS  Google Scholar 

  104. Reyna-Lopez GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710

    Article  CAS  PubMed  Google Scholar 

  105. Peraza-Echeverria S, Herrera-Valencia VA, Kay A-J (2001) Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 161:359–367

    Article  CAS  PubMed  Google Scholar 

  106. Wang X, Wu R, Lin X, Bai Y, Song C, Yu X, Xu C, Zhao N, Dong Y, Liu B (2013) Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids. BMC Plant Biol 13:77. https://doi.org/10.1186/1471-2229-13-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li X, Xu M, Korban SS (2002) DNA methylation profiles differ between field- and in vitro-grown leaves of apple. J Plant Physiol 159:1229–1234

    Article  Google Scholar 

  108. Portis E, Acquadro A, Comino C, Lanteri S (2004) Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 166:169–178

    Article  CAS  Google Scholar 

  109. Gao X, Yang D, Cao D, Ao M, Sui X, Wang Q, Kimatu J, Wang L (2010) In vitro micropropagation of Freesia hybrida and the assessment of genetic and epigenetic stability in regenerated plantlets. J Plant Growth Regul 29:257–267. https://doi.org/10.1007/s00344-009-9133-4

    Article  CAS  Google Scholar 

  110. Goyali JC, Igamberdiev AU, Debnath SC (2018) DNA methylation in lowbush blueberry (Vaccinium angustifolium Ait.) propagated by softwood cutting and tissue culture. Can J Plant Sci 98:1035–1044

    Article  CAS  Google Scholar 

  111. Berdasco M, Fraga MF, Esteller M (2009) Quantification of global DNA methylation by capillary electrophoresis and mass spectrometry. In: DNA methylation. Springer, pp 23–34

  112. Lin W, Xiao X, Zhang H, Li Y, Liu S, Sun W, Zhang X, Wu Q (2019) Whole-genome bisulfite sequencing reveals a role for dna methylation in variants from callus culture of pineapple (Ananas comosus L.). Genes 10:877. https://doi.org/10.3390/genes10110877

    Article  CAS  PubMed Central  Google Scholar 

  113. Chwialkowska K, Korotko U, Kosinska J, Szarejko I, Kwasniewski M (2017) Methylation sensitive amplification polymorphism sequencing (MSAP-Seq)—A method for high-throughput analysis of differentially methylated CCGG sites in plants with large genomes. Front Plant Sci 8:2056

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gulyás A, Dobránszki J, Kiss E, Da Silva JAT, Posta K, Hidvégi N (2019) Changes in DNA methylation pattern of apple long-term in vitro shoot culture and acclimatized plants. J Plant Physiol 239:18–27. https://doi.org/10.1016/j.jplph.2019.05.007

    Article  CAS  PubMed  Google Scholar 

  115. Rakocevic A, Mondy S, Tirichine L, Cosson V, Brocard L, Iantcheva A, Cayrel A, Devier B, Abu El-Heba GA, Ratet P (2009) MERE1 a low-copy-number copia-type retroelement in Medicago truncatula active during tissue culture. Plant Physiol 151:1250. https://doi.org/10.1104/pp.109.138024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rosati P, Mezzetti B, Ancherani M, Foscolo S, Predieri S, Fasolo F (1990) In vitro selection of apple rootstock somaclones with Phytophthora cactorum culture filtrate. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 409–416. https://doi.org/10.17660/ActaHortic.1990.280.66

    Book  Google Scholar 

  117. Gillis K, Gielis J, Peeters H, Dhooghe E, Oprins J (2007) Somatic embryogenesis from mature Bambusa balcooa Roxburgh as basis for mass production of elite forestry bamboos. Plant Cell Tissue Organ Cult 91:115–123

    Article  Google Scholar 

  118. Bednarek PT, Orłowska R, Koebner RMD, Zimny J (2007) Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biol 7:10

    Article  PubMed  PubMed Central  Google Scholar 

  119. Guo W, Wu R, Zhang Y, Liu X, Wang H, Gong L, Zhang Z, Liu B (2007) Tissue culture-induced locus-specific alteration in DNA methylation and its correlation with genetic variation in Codonopsis lanceolata Benth. et Hook. f. Plant Cell Rep 26:1297–1307. https://doi.org/10.1007/s00299-007-0320-0

    Article  CAS  PubMed  Google Scholar 

  120. Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biol 8:78–78. https://doi.org/10.1186/1471-2229-8-78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Baránek M, Křižan B, Ondrušíková E, Pidra M (2010) DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tissue Organ Cult 101:11–22

    Article  Google Scholar 

  122. Sharma SK, Bryan GJ, Winfield MO, Millam S (2007) Stability of potato (Solanum tuberosum L.) plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: a comparative phenotypic, cytogenetic and molecular assessment. Planta 226:1449–1458

    Article  CAS  PubMed  Google Scholar 

  123. Momose M, Abe Y, Ozeki Y (2010) Miniature inverted-repeat transposable elements of stowaway are active in potato. Genetics 186:59. https://doi.org/10.1534/genetics.110.117606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nassar AMK, Kubow S, Leclerc YN, Donnelly DJ (2014) Somatic mining for phytonutrient improvement of ‘russet burbank’ potato. Am J Potato Res 91:89–100. https://doi.org/10.1007/s12230-013-9334-z

    Article  CAS  Google Scholar 

  125. Sato M, Hosokawa M, Doi M (2011) Somaclonal variation is induced de novo via the tissue culture process: a study quantifying mutated cells in Saintpaulia. PLoS One 6:e23541. https://doi.org/10.1371/journal.pone.0023541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bender J, Fink GR (1995) Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83:725–734. https://doi.org/10.1016/0092-8674(95)90185-X

    Article  CAS  PubMed  Google Scholar 

  127. Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103

    Article  CAS  PubMed  Google Scholar 

  128. Saze H, Kakutani T (2007) Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J 26:3641–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Durand S, Bouché N, Perez Strand E, Loudet O, Camilleri C (2012) Rapid establishment of genetic incompatibility through natural epigenetic variation. Curr Biol 22:326–331. https://doi.org/10.1016/j.cub.2011.12.054

    Article  CAS  PubMed  Google Scholar 

  131. Peschke VM, Phillips RL, Gengenbach BG (1987) Discovery of transposable element activity among progeny of tissue culture—derived maize plants. Science 238:804–807. https://doi.org/10.1126/science.238.4828.804

    Article  CAS  PubMed  Google Scholar 

  132. Peschke VM, Phillips RL (1991) Activation of the maize transposable element Suppressor-mutator (Spm) in tissue culture. Theor Appl Genet 81:90–97. https://doi.org/10.1007/BF00226117

    Article  CAS  PubMed  Google Scholar 

  133. Miura K, Agetsuma M, Kitano H, Yoshimura A, Matsuoka M, Jacobsen SE, Ashikari M (2009) A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci 106:11218–11223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang L, Cheng Z, Qin R, Qiu Y, Wang J-L, Cui X, Gu L, Zhang X, Guo X, Wang D (2012) Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell 24:4407–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Telias A, Lin-Wang K, Stevenson DE, Cooney JM, Hellens RP, Allan AC, Hoover EE, Bradeen JM (2011) Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol 11:93. https://doi.org/10.1186/1471-2229-11-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427. https://doi.org/10.1038/nature08328

    Article  CAS  PubMed  Google Scholar 

  137. Kukreja AK, Dhawan OP, Mathur AK, Ahuja PS, Mandal S (1991) Screening and evaluation of agronomically useful somaclonal variations in Japanese mint (Mentha arvensis L.). Euphytica 53:183–191

    Article  Google Scholar 

  138. Yadav VK, McHta SL (1995) Lathyrus sativus: a future pulse crop free of neurotoxin. Curr Sci 68:288–292

    Google Scholar 

  139. Rodriguez NV, Kowalski B, Rodriguez LG, Caraballoso IB, Suarez MA, Perez PO, Quintana CR, Gonzalez N, Ramos RQ (2007) In vitro and ex vitro selection of potato plantlets for resistance to early blight. J Phytopathol 155:582–586

    Article  Google Scholar 

  140. Yadav PV, Suprasanna P, Gopalrao KU, Anant BV (2006) Molecular profiling using RAPD technique of salt and drought tolerant regenerants of sugarcane. Sugar Tech 8:63–68. https://doi.org/10.1007/BF02943744

    Article  CAS  Google Scholar 

  141. Singh G, Sandhu SK, Meeta M, Singh K, Gill R, Gosal SS (2008) In vitro induction and characterization of somaclonal variation for red rot and other agronomic traits in sugarcane. Euphytica 160:35–47

    Article  Google Scholar 

  142. Roy B, Mandal AB (2005) Towards development of Al-toxicity tolerant lines in indica rice by exploiting somaclonal variation. Euphytica 145:221–227

    Article  CAS  Google Scholar 

  143. Jiang C, Mithani A, Gan X, Belfield EJ, Klingler JP, Zhu J-K, Ragoussis J, Mott R, Harberd NP (2011) Regenerant Arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr Biol 21:1385–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Boxus P, Jemmali A, Terzi JM, Arezki O (2000) Drift in genetic stability in micropropagation: the case of strawberry. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 155–162. https://doi.org/10.17660/ActaHortic.2000.530.16

    Book  Google Scholar 

  145. Goyali JC, Igamberdiev AU, Debnath SC (2015) Propagation methods affect fruit morphology and antioxidant properties but maintain clonal fidelity in lowbush blueberry. HortScience 50:888–896

    Article  CAS  Google Scholar 

  146. Thieme M, Lanciano S, Balzergue S, Daccord N, Mirouze M, Bucher E (2017) Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biol 18:134. https://doi.org/10.1186/s13059-017-1265-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Deverno LL (1995) Evaluation of somaclonal variation during somatic embryognesis. Somatic embryogenesis in woody plants. Plant Cell Rep 10:425–430

    Google Scholar 

  148. Shchukin A, Ben-Bassat D, Israeli Y (1996) Plant regeneration via somatic embryogenesis in Grand Nain banana and its effect on somaclonal variation. In: III International Symposium on In vitro and Horticultural Breeding, pp 317–318

  149. Shchukin A, Ben-Bassat D, Israeli Y (1998) Somaclonal variation and horticultural performance of ‘Grand Naine’ bananas multiplied via somatic embryogenesis or shoot-tip culture. In: Plant biotechnology and in vitro biology in the 21st century. International Association for Plant Tissue Culture Abstracts, Jerusalem, pp 14–19

    Google Scholar 

Download references

Acknowledgements

Authors’ research in this area is supported by the St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, St. John’s, Newfoundland and Labrador, Canada.

Funding

Agriculture and Agri-Food Canada St. John’s Research and Development Centre contribution No. 240.

Author information

Authors and Affiliations

Authors

Contributions

A.G. outlined, wrote the manuscript, prepared the tables and the figures. A.U.I. revised and reviewed the manuscript. S.C.D. conceptualized, helped in writing, revised, and reviewed the manuscript. All authors have approved the final version.

Corresponding author

Correspondence to Samir C. Debnath.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest/competing interests.

Consent to participate

This research did not involve any human participants and/or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Igamberdiev, A.U. & Debnath, S.C. Tissue culture-induced DNA methylation in crop plants: a review. Mol Biol Rep 48, 823–841 (2021). https://doi.org/10.1007/s11033-020-06062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06062-6

Keywords

Navigation