Skip to main content
Log in

Molecular cloning and functional analysis of lotus salt-induced NnDREB2C, NnPIP1-2 and NnPIP2-1 in Arabidopsis thaliana

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dehydration-responsive element bindings transcription factor (DREBs) and plasma membrane intrinsic proteins (PIPs) have been characterized multi-functions in plant growth and metabolism, as well as in the adaptation to various stresses. In this study, we cloned the full-length cDNA of NnDREB2C from a salt-tolerated lotus species with RT-PCR methods. Analysis of qRT-PCR demonstrated that NnDREB2C mRNA in the leaf dramatically increased after the treatments of NaCl, abscisic acid, low temperature and mannitol. Next, NnDREB2C was cloned into constitutive expression vector pSN1301, which in turn transformed into Arabidopsis thaliana to investigate its function in plants. NnDREB2C overexpression significantly elevated Arabidopsis tolerance against salt and drought stresses, showing higher survival rates, lower conductivity and more chlorophyll content than those of wild-type plants. Moreover, higher germination rates were observed in the NnDREB2C overproducing plants when subjected into the stresses of NaCl and mannitol. Furthermore, we investigate the potential down-stream genes regulated by NnDREB2C and observed a significant increase in expressions of several genes belonging to PIPs family, including PIP1-1, PIP1-2, PIP1-3, PIP1-4 and PIP1-5. Consistently, overexpressed NnPIP1-2 and NnPIP2-1 conferred Arabidopsis the tolerance to stresses. Taken together, we concluded that overexpression of NnDREB2C enhanced the tolerance of salt and drought stresses in plants, which might probably be derived from the increased expression of the genes belonging to PIPs family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

RT-PCR:

Reverse transcription polymerase chain reaction

qRT-PCR:

Quantitative real time polymerase chain reaction

DREB2C:

Dehydration responsive element-binding protein 2C

ABA:

Abscisic acid

PIPs:

Plasma membrane intrinsic proteins

LT:

Low temperature

References

  1. Maas EV, Grieve CM (1990) Spike and leaf development in salt-stressed wheat. Agroforest Syst 11:199–211

    Article  Google Scholar 

  2. Li B, Fan R, Guo S, Wang P, Zhu X, Fan Y, Chen Y, He K, Kumar A, Shi J, Wang Y, Li L, Hu Z, Song C-P (2019) The Arabidopsis MYB transcription factor, MYB111 modulates salt responses by regulating flavonoid biosynthesis. Environ Exp Bot 166:103807. https://doi.org/10.1016/j.envexpbot.2019.103807

    Article  CAS  Google Scholar 

  3. Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238

    Article  Google Scholar 

  4. Husain S, Munns R, Condon AG (2003) Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Aust J Agr Res 54:589–597

    Article  CAS  Google Scholar 

  5. Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  Google Scholar 

  6. Hall JL, Flowers TJ (1973) The effect of salt on protein synthesis in the halophyte Suaeda maritima. Planta 110:361–368

    Article  CAS  Google Scholar 

  7. Murguia JR, Belles JM, Serrano R (1995) A salt-sensitive 3′(2′), 5′-bisphosphate nucleotidase involved in sulfate activation. Science 267:232–234

    Article  CAS  Google Scholar 

  8. Ma LY, Zhang H, Sun LR, Jiao YH, Zhang GZ, Miao C, Hao FS (2012) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J Exp Bot 63(1):305–317. https://doi.org/10.1093/jxb/err280

    Article  CAS  PubMed  Google Scholar 

  9. Li C, Zheng L, Wang X, Hu Z, Zheng Y, Chen Q, Hao X, Xiao X, Wang X, Wang G, Zhang Y (2019) Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights. Plant Sci 285:1–13. https://doi.org/10.1016/j.plantsci.2019.04.023

    Article  CAS  PubMed  Google Scholar 

  10. Qu X, Cao B, Kang J, Wang X, Han X, Jiang W, Shi X, Zhang L, Cui L, Hu Z, Zhang Y, Wang G (2019) Fine-tuning stomatal movement through small signaling peptides. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00069

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu H, Guo S, Lu M, Zhang Y, Li J, Wang W, Wang P, Zhang J, Hu Z, Li L, Si L, Zhang J, Qi Q, Jiang X, Botella JR, Wang H, Song C-P (2019) Biosynthesis of DHGA12 and its roles in Arabidopsis seedling establishment. Nat Commun 10(1):1768. https://doi.org/10.1038/s41467-019-09467-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  Google Scholar 

  13. Zhang HY, Mao XG, Jing RL, Chang XP, Xie HM (2011) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot 62:975–988

    Article  CAS  Google Scholar 

  14. Yokotani N, Higuchi M, Kondou Y, Ichikawa T, Iwabuchi M, Hirochika H, Matsui M, Oda K (2011) A novel chloroplast protein, CEST induces tolerance to multiple environmental stresses and reduces photooxidative damage in transgenic Arabidopsis. J Exp Bot 62:557–569

    Article  CAS  Google Scholar 

  15. Kang HG, Kim J, Kim B, Jeong H, Choi SH, Kim EK, Lee HY, Lim PO (2011) Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci 180:634–641

    Article  CAS  Google Scholar 

  16. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys ResComm 353:299–305

    Article  CAS  Google Scholar 

  17. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta Gene Regul Mech 1819:86–96

    Article  CAS  Google Scholar 

  19. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  Google Scholar 

  20. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  Google Scholar 

  21. Chen JH, Xia XL, Yin WL (2011) A poplar DRE-binding protein gene, PeDREB2L, is involved in regulation of defense response against abiotic stress. Gene 483:36–42

    Article  CAS  Google Scholar 

  22. Reis RR, da Cunha BADB, Martins PK, Martins MTB, Alekcevetch JC, Chalfun A, Andrade AC, Ribeiro AP, Qin F, Mizoi J, Yamaguchi-Shinozaki K, Nakashima K, Carvalho JDC, de Sousa CAF, Nepomuceno AL, Kobayashi AK, Molinari HBC (2014) Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci 221:59–68

    Article  Google Scholar 

  23. Zhou ML, Ma JT, Zhao YM, Wei YH, Tang YX, Wu YM (2012) Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 506:10–17

    Article  CAS  Google Scholar 

  24. Ban QY, Liu GF, Wang YC (2011) A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. J Plant Physiol 168:449–458

    Article  CAS  Google Scholar 

  25. Cheng LB, Hui LC, Yin L, Li SY, Chen XH, Li LJ (2015) Overexpression of NnDREB2, isolated from lotus improves salt tolerance in transgenic Arabidopsis thaliana. Acta Physiol Plant 37:1–12

    Article  Google Scholar 

  26. Li DD, Ruan XM, Zhang J, Wu YJ, Wang XL, Li XB (2013) Cotton plasma membrane intrinsic protein 2 s (PIP2 s) selectively interact to regulate their water channel activities and are required for fibre development. New Phytol 199:695–707

    Article  CAS  Google Scholar 

  27. Yu GH, Zhang X, Ma HX (2015) Changes in the physiological parameters of SbPIP1 transformed wheat plants under salt stress. Int J Genomics. https://doi.org/10.1155/2015/384356

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiao K, Li X, Guo Y, Guan Y, Guo W, Luo D, Hu Z, Shen Z (2019) Regulation of compound leaf development in mungbean (Vigna radiata L.) by CUP-SHAPED COTYLEDON/NO APICAL MERISTEM (CUC/NAM) gene. Planta 249(3):765–774. https://doi.org/10.1007/s00425-018-3038-z

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Liu W, Zhuang L, Zhu Y, Wang F, Chen T, Yang J, Ambrose M, Hu Z, Weller JL, Luo D (2019) BIGGER ORGANS and ELEPHANT EAR-LIKE LEAF1 control organ size and floral organ internal asymmetry in pea. J Exp Bot 70(1):179–191. https://doi.org/10.1093/jxb/ery352

    Article  PubMed  Google Scholar 

  30. Guo SY, Dai SJ, Singh PK et al (2018) A membrane-bound NAC-Like transcription factor OsNTL5 represses the fowering in Oryza sativa. Front plant sci 9:9

    Article  Google Scholar 

  31. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  Google Scholar 

  32. Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, Jiang W, Han X, Kang J, Wang X, Pan L, Lv S, Cao B, Zhang Y, Wu J, Han H, Hu Z, Cui L, Sawa S, He J, Wang G (2019) CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant, Cell Environ 42(3):1033–1044. https://doi.org/10.1111/pce.13475

    Article  CAS  Google Scholar 

  33. Fang XH, Gao JF, Wang PK, Xu XY, Liu ZX, Shen SH, Feng BL (2015) A buckwheat (Fagopyrum esculentum) DRE-binding transcription factor gene, FeDREB1, enhances freezing and drought tolerance of transgenic Arabidopsis. Plant Mol Biol Rep 33:1510–1525

    Article  CAS  Google Scholar 

  34. Hiscox JD, Israelstam GF (1979) A method for extraction of cholorophyII from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  35. Xiao TW, Mi MM, Wang CY, Qian M, Chen YH, Zheng LQ, Zhang HS, Hu ZB, Shen ZG, Xia Y (2018) A methionine-R-sulfoxide reductase, OsMSRB5, is required for rice defense against copper toxicity. Environ Exp Bot 153:45–53. https://doi.org/10.1016/j.envexpbot.2018.04.006

    Article  CAS  Google Scholar 

  36. Li L, Hou MJ, Cao L, Xia Y, Shen ZG, Hu ZB (2018) Glutathione S-transferases modulate Cu tolerance in Oryza sativa. Environ Exp Bot 155:313–320. https://doi.org/10.1016/j.envexpbot.2018.07.007

    Article  CAS  Google Scholar 

  37. Cui F, Wu W, Wang K, Zhang Y, Hu Z, Brosché M, Liu S, Overmyer K (2019) Cell death regulation but not abscisic acid signaling is required for enhanced immunity to Botrytis in Arabidopsis cuticle-permeable mutants. J Exp Bot. https://doi.org/10.1093/jxb/erz345

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bhosale R, Boudolf V, Cuevas F, Lu R, Eekhout T, Hu ZB, Van Isterdael G, Lambert GM, Xu F, Nowack MK, Smith RS, Vercauteren I, De Rycke R, Storme V, Beeckman T, Larkin JC, Kremer A, Hofte H, Galbraith DW, Kumpf RP, Maere S, De Veylder L (2018) A spatiotemporal DNA endoploidy map of the Arabidopsis root reveals roles for the endocycle in root development and stress adaptation. Plant Cell 30(10):2330–2351. https://doi.org/10.1105/tpc.17.00983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  Google Scholar 

  40. Kim SYN (2006) The role of ABF family bZIP class transcription factors in stress response. Physiol Plant 126:519–527

    CAS  Google Scholar 

  41. Sembdner AG, Parthie B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Ann Rev Plant Biol 44:569–589

    Article  CAS  Google Scholar 

  42. Song YW, Xiang FY, Zhang GZ, Miao YC, Miao C, Song CP (2016) Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. Front Plant Sci 7:16. https://doi.org/10.3389/fpls.2016.00181

    Article  Google Scholar 

  43. Wang K, He JN, Zhao Y, Wu T, Zhou XF, Ding YL, Kong LY, Wang XJ, Wang Y, Li JG, Song CP, Wang BS, Yang SH, Zhu JK, Gong ZZ (2018) EAR1 negatively regulates ABA signaling by enhancing 2C protein phosphatase activity. Plant Cell 30(4):815–834. https://doi.org/10.1105/tpc.17.00875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45

    Article  Google Scholar 

  45. Liu C, Cui D, Zhao J, Liu N, Wang B, Liu J, Xu E, Hu Z, Ren D, Tang D, Hu Y (2019) Two Arabidopsis receptor-like cytoplasmic kinases SZE1 and SZE2 associate with the ZAR1-ZED1 complex and are required for effector-triggered immunity. Mol Plant. https://doi.org/10.1016/j.molp.2019.03.012

    Article  PubMed  Google Scholar 

  46. Tong Z, Hong B, Yang YJ, Li QH, Ma N, Ma C, Gao JP (2009) Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol Biol 71:115–129

    Article  CAS  Google Scholar 

  47. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  CAS  Google Scholar 

  48. Jang JY, Kim DG, Kim YO, Kim JS, Kang HS (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725

    Article  CAS  Google Scholar 

  49. Wang X, Gao F, Bing J, Sun WM, Feng XX, Ma XF, Zhou YJ, Zhang GF (2019) Overexpression of the jojoba aquaporin gene, ScPIP1, enhances drought and salt tolerance in transgenic Arabidopsis. Int J Mol Sci 20:153

    Article  Google Scholar 

  50. Pawlowicz I, Rapacz M, Perlikowski D, Gondek K, Kosmala A (2017) Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. J Appl Genet 58:421–435

    Article  CAS  Google Scholar 

  51. Li JT, Wang NA, Xin HP, Li SH (2013) Overexpression of VaCBF4, a transcription factor from Vitis amurensis, improves cold tolerance accompanying increased resistance to drought and salinity in Arabidopsis. Plant Mol Biol Rep 31:1518–1528

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Edanz Groop for their editorial assistance. This work was supported by Jiangsu Agriculture Science and Technology Innovation Fund (CX (18) 3066), and the modern agriculture of Yangzhou (YZ2017044).

Author information

Authors and Affiliations

Authors

Contributions

CL and WC were responsible for most data analysis, and WC wrote the manuscript. LZ conducted the experimental work. The experiment was designed by LS and CL, who critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Cheng Libao or Li Shuyan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2019_5156_MOESM1_ESM.jpg

Supplementary material 1 (JPEG 100 kb) Fig. S1 Alignment of the deduced amino acid sequence of NnDREB2C. DREB2C from Arabidopsis (NP_565929.1), Camalina (XP_010505763.1), Cucumber (XP_004138558.1) and Phoenix (XP_008799804.1) were collected for comparison with the DNAman software

Supplementary material 2 (DOCX 15 kb) Table S1: Isolation of NnPIPs of lotus and their deduced amino acids.

Supplementary material 3 (DOCX 20 kb) Table S2: The primer sequences for NnPIPs isolation and expression analysis

11033_2019_5156_MOESM4_ESM.doc

Supplementary material 4 (DOC 45 kb) Table S3: Primers for drought stress-related genes. Twenty-eight stresses-related genes from Arabidopsis were selected for expression analysis in NnDREB2C-transgenic and wild type plants. All these genes were derived from the NCBI database, and primers were designed according to the gene sequences with the Primer 5.0 software

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziyuan, L., Chunfei, W., Jianjun, Y. et al. Molecular cloning and functional analysis of lotus salt-induced NnDREB2C, NnPIP1-2 and NnPIP2-1 in Arabidopsis thaliana. Mol Biol Rep 47, 497–506 (2020). https://doi.org/10.1007/s11033-019-05156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05156-0

Keywords

Navigation