Skip to main content
Log in

Improving oxidative damage, photosynthesis traits, growth and flower dropping of pepper under high temperature stress by selenium

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pepper is mostly produced in greenhouses and fields in spring up to the end of summer. The reproductive stage coincides with high temperature of summer, which causes flowers to drop, leading to reduction in the yield, Se as a beneficial element can improved some stress indices. Control randomized design experiment was conducted to investigate the effect(s) of Se on heat stresses of pepper in control environment. Se in three concentrations of SeCl2 (4 (Se1), 6 (Se2) and 8 (Se3) mg L−1) was used at 35 ± 2 °C for 4 h a day, matching the high afternoon temperature. Growth, photosynthesis traits (Photosynthesis rate, transpiration and stomatal conductance), flower dropping and antioxidant changes were all measured. Results showed that Se1 decreased deleterious effects of heat stresses on vegetative traits (fresh and dry weight of fruit). Including dry weight of shoot, fresh and dry weight of root, and reproductive growth, such as Fresh weight and dry weight of fruit, flowers and fruit number. Photosynthesis rate, fruit antioxidant and phenol improved with the application of Se to heat stresses. POD and SOD activity increased, and MDA content decreased with Se application at the high temperature. Se also improved the P and S uptake. Generally, using 4 and 6 mg L−1 of Se could improve growth and physiological and phytochemical parameters of pepper and decrease the flower dropping at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

POD:

Peroxidase

SOD:

Superoxide dismutase

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

CAT:

Catalase

Se:

Selenium

XRF:

X-ray fluorescence

References

  1. Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–331

    Article  CAS  PubMed  Google Scholar 

  2. Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–274

    Article  CAS  PubMed  Google Scholar 

  3. Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005) Analysis of sulfurand selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  CAS  PubMed  Google Scholar 

  4. Bodnar M, Konieczka P, Namiesnik J (2012) The properties, functions, and use of selenium compounds in living organisms. J Environ Sci Health Part C 30:225–252

    Article  CAS  Google Scholar 

  5. Wu Z, Banuelos GS, Lin ZQ, Liu Y, Yuan L, Yin X, Li M (2015) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:136

    PubMed  PubMed Central  Google Scholar 

  6. Djanaguiraman M, Prasad PV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  CAS  PubMed  Google Scholar 

  7. Wang YD, Wang X, Wong YS (2012) Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. J Proteomics 75:1849–1866

    Article  CAS  PubMed  Google Scholar 

  8. Whanger PD (2004) Selenium and its relationship to cancer: an update. Br J Nutr 91:11–28

    Article  CAS  PubMed  Google Scholar 

  9. Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

  10. Germ M, Kreft I, Osvald J (2005) Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant physiol Biochem 43(5):445–448

    Article  CAS  PubMed  Google Scholar 

  11. Turakainen M, Hartikainen H, Ekholm P, Seppänen MM (2006) Distribution of selenium in different biochemical fractions and raw darkening degree of potato (Solanum tuberosum L.) tuber supplemented with selenate. J Agric Food Chem 54:8617–8622

    Article  CAS  PubMed  Google Scholar 

  12. Balal RM, Shahid MA, Javaid MM, Iqbal Z, Anjum MA, Garcia-Sanchez F, Mattson NS (2016) The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress. Acta Physiol Plant 38(6):158

    Article  CAS  Google Scholar 

  13. Yao X, Chu J, Wang G (2009) Effects of selenium on wheat seedlings under drought stress. Biol Trace Elem Res 130:283–290

    Article  CAS  PubMed  Google Scholar 

  14. Xue TL, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237:55–61

    Article  CAS  Google Scholar 

  15. Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074–2085

    Article  PubMed  PubMed Central  Google Scholar 

  16. Puccinelli M, Malorgio F, Pezzarossa B (2017) Selenium enrichment of horticultural crops. Molecules 22:933

    Article  CAS  PubMed Central  Google Scholar 

  17. Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  18. Pennanen A, Tailin XUE, Hartikainen H (2002) Protective role of selenium in plant subjected to severe UV irradiation stress. J Appl Bot 76:66–76

    CAS  Google Scholar 

  19. Thuy TL, Kenji M (2015) Effect of high temperature on fruit productivity and seed-set of sweet pepper (Capsicum annuum L.) in the field condition. J Agric Sci Technol 515:516–521

    Google Scholar 

  20. Javanmardi J, Rahemi M, Nasirzadeh M (2014) Responses of tomato and pepper transplants to high-temperature conditioning. Int J Veg Sci 20(4):374–391

    Article  Google Scholar 

  21. Haghighi M, Heidarian S, Teixeira da Silva Jaime A (2012) The effect of titanium amendment in N-withholding nutrient solution on physiological and photosynthesis attributes and micronutrient uptake of tomato. Biol Trace Elem Res 150:381–390

    Article  CAS  PubMed  Google Scholar 

  22. Haghighi M, Sheibanirad A, Pessarakli M (2016) Effects of selenium as a beneficial element on growth and photosynthetic attributes of greenhouse cucumber. J Plant Nutr 39(10):1493–1498

    Article  CAS  Google Scholar 

  23. Yang H, Wu F, Cheng J (2011) Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food chem 127(3):1237–1242

    Article  CAS  PubMed  Google Scholar 

  24. Ghasemnezhad M, Sherafati M, Payvast GA (2011) Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum L.) fruits at two different harvest times. J Funct foods 3(1):44–49

    Article  CAS  Google Scholar 

  25. Marin A, Rubio JS, Martinez V, Gil MI (2009) Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition. J Sci Food Agric 89(8):1352–1359

    Article  CAS  Google Scholar 

  26. Haghighi M, Abolghasemi R, Teixeira da Silva JA (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-se amendment. Sci Hortic 178:231–240

    Article  CAS  Google Scholar 

  27. Siwek P, Libik A, Zawiska I (2012) The effect of biodegradable nonwovens in butter head lettuce cultivation for early harvest. Folia Hort 24(2):161–166

    Article  Google Scholar 

  28. Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47(10):3954–3962

    Article  CAS  PubMed  Google Scholar 

  29. Yu L, Haley S, Perret J, Harris M, Wison J, Qian M (2002) Free radical scavenging properties of wheat extracts. J Agric Food Chem 50:1619–1624

    Article  CAS  PubMed  Google Scholar 

  30. Agarwal S (2007) Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biol Plant 51(1):157–160

    Article  CAS  Google Scholar 

  31. Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53(3):247–257

    Article  CAS  Google Scholar 

  32. Haghighi M, Nikhbakht A, Ping Xia Y, Pessarakli M (2014) Influence of humic acid in diluted nutrient solution on growth nutrient efficiency and postharvest attributes of gerbera. Commun Soil Sci Plant Anal 45(2):177–188

    Article  CAS  Google Scholar 

  33. Samantary S (2002) Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere 47:1065–1072

    Article  CAS  PubMed  Google Scholar 

  34. Haghighi M, Kafi M, Pessarakli M, Sheibanirad A, Sharifinia MR (2016) Using kale (Brassica oleracea var. acephala) as a phyto remediation plant species for lead (pb) and cadmium (cd) removal in saline soils. J Plant Nutr 10(39):1460–1471

    Article  CAS  Google Scholar 

  35. Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  36. Haghighi M, Fang P, Pessarakli M (2015) Effects of ammonium nitrate and monosodium glutamate in waste water on the growth, antioxidant activity, and nitrogen assimilation of lettuce (Lactuca sativa L.). J Plant Nutr 38:2217–2229

    Article  CAS  Google Scholar 

  37. Estan MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers TJ, Bolarin MC (2004) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56(412):703–712

    Article  CAS  PubMed  Google Scholar 

  38. Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40(3):718–727

    Article  CAS  Google Scholar 

  39. Govindaraj M, Selvi B, Rajarathinam S, Sumathi P (2011) Genetic variability and heritability of grain yield components and grain mineral concentration in India’s pearl millet (Pennisetum glaucum (L) R. Br.) accessions. Afr J Food Agric Nutr Dev 11(3):4758e4771

    Google Scholar 

  40. Diao M, Ma L, Wang J, Cui J, Fu A, Liu HY (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Growth Regul 33(3):671–682

    Article  CAS  Google Scholar 

  41. Savicka M, Skute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56(1):26–33

    Article  CAS  Google Scholar 

  42. Nowak J, kaklewski K, Ligocki M (2004) Influence of selenium on oxidoreductive enzymes activity in soil and in plants. Soil Biol Biochem 36:1553–1558

    Article  CAS  Google Scholar 

  43. Rios JJ, Rosales MA, Blasco B, Cervilla LM, Romero L, Ruiz JM (2008) Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci Hortic 116:248–255

    Article  CAS  Google Scholar 

  44. Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367

    Article  CAS  Google Scholar 

  45. Fontes PCR, Silva DJH (2005) Cultura do tomate. In: Fontes PCR (ed) Olericultura teoria e pratica. Suprema, Vicosa, pp 457–476

    Google Scholar 

  46. Renkema H, Koopmans A, Kersbergen L, Kikkert J, Hale B, Berkelaar E (2012) The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola. Plant Soil 354:239–250

    Article  CAS  Google Scholar 

  47. Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  48. Kikkert J, Berkelaar E (2013) Plant uptake and translocation of in organic and organic forms of selenium. Arch Environ ContamToxicol 65:458–465

    Article  CAS  Google Scholar 

  49. Feist LJ, Parker DR (2001) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Y, Pan G, Chen J, Hu Q (2003) Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant Soil 253:437–443

    Article  CAS  Google Scholar 

  51. White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Each named author has substantially contributed to conducting the underlying research and drafting this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Haghighi.

Ethics declarations

Conflict of interest

Additionally, to the best of our knowledge, the named authors have no conflict of interest, financial or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, M., Ramezani, M.R. & Rajaii, N. Improving oxidative damage, photosynthesis traits, growth and flower dropping of pepper under high temperature stress by selenium. Mol Biol Rep 46, 497–503 (2019). https://doi.org/10.1007/s11033-018-4502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4502-3

Keywords

Navigation