Skip to main content
Log in

The Effect of Titanium Amendment in N-Withholding Nutrient Solution on Physiological and Photosynthesis Attributes and Micronutrient Uptake of Tomato

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Titanium (Ti) is a beneficial element that promotes growth and biomass production although the mechanism by which this improvement takes place is still unclear, as are other effects on plants, although it is believed that Ti can compensate for N deficiency. To prove this hypothesis, a hydroponic experiment was designed to investigate the effect of adding Ti to a nutrient solution on the nutrient uptake of tomato (Lycopersicon esculentum L.) by withholding N within the nutrient solution (NS) by 25 % (NS2) and by 50 % (NS1). Ti was added at 1 and 2 mg L−1. When Ti was added to nutrient solution, the elemental concentration in tomato changed significantly: K, Ca, Fe, and Zn decreased while Ti increased. As the concentration of N in nutrient solution decreased, the Ca and Ti concentration of tomato leaves decreased and the K, Mn, Fe, Cu, and Zn concentration increased. As the N concentration in nutrient solution increased, the Ca concentration decreased although the application of Ti compensated for Ca concentration in NS1. All the photosynthetic attributes and physiological characteristics, including flower induction, decreased when the N concentration of NS decreased by 50 %, although this decrease could be compensated by applying 1 mg L−1 Ti. This has valuable and practical applications and implications for tomato hydroponic culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wojcik P, Klamkowski K (2007) “Szampion” apple tree response to foliar titanium application. J Plant Nutr 27:203–204

    Google Scholar 

  2. Kužel S, Hruby M, Cígler P, Tlustoš P, Van PN (2003) Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Biol Trace Elem Res 91:179–189

    Article  PubMed  Google Scholar 

  3. Frutos MJ, Pastor JJ, Martínez-Sánchez F, Alcaraz CF (1996) Improvement of the nitrogen uptake induced by titanium leaf supply in nitrogen-stressed pepper seedlings. J Plant Nutr 19:771–783

    Article  CAS  Google Scholar 

  4. Němec A, Káš V (1923) The physiological significance of titanium in the plant organism. Biochem 140:583–590

    Google Scholar 

  5. Kiss F, Gy D, Feher M, Balough A, Szabolcsi Pais L (1985) The effect of titanium and gallium on photosynthetic rate of algae. J Plant Nutr 8:825–831

    Article  CAS  Google Scholar 

  6. Daood HG, Biacs P, Fehér M, Hajdu F, Pais I (1998) Effect of titanium on the activity of lipoxygenase. J Plant Nutr 11:505–516

    Article  Google Scholar 

  7. Calabrese EJ, Baldwin IA (2003) Inorganics and hormesis. Crit Rev Toxicol 33:215–304

    Article  PubMed  CAS  Google Scholar 

  8. Hruby M, Cigler P, Kuzel S (2002) Titanium in plant nutrition: the contribution to understanding the mechanism of titanium action in plant. J Plant Nutr 25:577–598

    Article  CAS  Google Scholar 

  9. Simon L, Hajdu F, Balogh A, Pais I (1988) Effect of titanium on growth and photosynthetic pigment composition of Chlorella pyrenoidosa (green alga). II. Effect of titanium ascorbate on pigment content and chlorophyll metabolism of chlorella. In: Pais I (ed) New results in the research of hardly known trace element and their role in the food chain. University of Horticultural and Food Science, Budapest, pp 87–101

    Google Scholar 

  10. Carvajal M, Alcaraz CF (1995) Effect of Ti(IV) on Fe activity in organs and organelles of Capsicum annuum L. J Plant Phytochem 35:977–980

    Google Scholar 

  11. Carvajal M, Alcaraz CF (1998) Why titanium is a beneficial element for plants. J Plant Nutr 21:655–664

    Article  CAS  Google Scholar 

  12. Larbi A, Abadia A, Abadia J, Morales F (2006) Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth Res 89:113–126

    Article  PubMed  CAS  Google Scholar 

  13. Cigler P, Olejnickova J, Hrubyd M, Csefalvay L, Peterka J, Kužel S (2010) Interactions between iron and titanium metabolism in spinach: a chlorophyll fluorescence study in hydropony. J Plant Physiol 167:1592–1597

    Article  PubMed  CAS  Google Scholar 

  14. Kanai S, Adu-Gymf J, Lei K, Ito J, Ohkura K, Moghaieb REA, El-Shemy H, Mohapatra R, Mohapatra PK, Saneoka H, Fujita K (2008) N-deficiency damps out circadian rhythmic changes of stem diameter dynamics in tomato plant. Plant Sci 174:183–191

    Article  CAS  Google Scholar 

  15. Le Bot J, Jeannequin B, Fabre R (2001) Growth and nitrogen status of soilless tomato plants following nitrate withdrawal from the nutrient solution. Ann Bot 88:361–370

    Article  Google Scholar 

  16. Stefanelli D, Goodwin I, Jones R (2010) Minimal nitrogen and water use in horticulture: effects on quality and content of selected nutrients. Food Res Int 43:1833–1843

    Article  CAS  Google Scholar 

  17. Wang X-L, Shan Y-H, Wang S-H, Du Y, Feng K (2011) Physiological responses of two wheat cultivars to nitrogen starvation. Agric Sci China 10:1577–1585

    Article  CAS  Google Scholar 

  18. Guidi I, Lorefice G, Pardossi A, Malorgio F, Tognoni F, Soldatini GF (1998) Growth and photosynthesis of Lycopersicon esculentum (L.) plants as affected by nitrogen deficiency. Biol Plant 40:235–244

    Article  Google Scholar 

  19. Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects diseases, development and yield of edible cowpea. J Agr Food Chem 7:2942–2947

    CAS  Google Scholar 

  20. Chao S-H, Choi H-S (2005) Method for providing enhanced photosynthesis. Korea Research Institute of Chemical Technology, Jeonju, South Korea. Bulletin 10 pp.

  21. Prusiński J, Kaszkowiak E (2005) Effect of titanium on yellow lupin yielding (Lupinus luteus L.). EJPAU 8(2):36

    Google Scholar 

  22. Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190

    Article  PubMed  CAS  Google Scholar 

  23. Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of Rubisco–Rubisco activase. Biol Trace Elem Res 111:239–253

    Article  PubMed  CAS  Google Scholar 

  24. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  PubMed  CAS  Google Scholar 

  25. Bedrosian AJ, Hanna WJ (1966) Trace element relationships in New Jersey soils. Soil Sci 101:50–56

    Article  CAS  Google Scholar 

  26. Carvajal M, Martínez-Sánchez F, Alcaraz CF (1994) Effect of Ti (IV) on some physiological activity indicators of Capsicum annuum L. plants. J Hort Sci 69:427–432

    CAS  Google Scholar 

  27. Giménez JL, Martínez-Sánchez F, Moreno A, Fuentes JL, Alcaraz CF (1990) Titanium in plant nutrition III. Effect of Ti (IV) on yield of Capsicum annuum L. In: Barcello, PIJ (ed.), Proc. III. Symp. Nat. Nutr. Min., pp. 123–128.

  28. Martínez-Sánchez F, Nunez M, Amoros A, Gimenez JL, Alcaraz CF (1993) Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annuum L. fruits. J Plant Nutr 16:975–981

    Article  Google Scholar 

  29. Ram N, Verloo M, Cottenie A (1983) Response of bean to foliar spray of titanium. Plant Soil 73:285–290

    Article  CAS  Google Scholar 

  30. Pais I (1983) The biological importance of titanium. J Plant Nutr 6:3–131

    Article  CAS  Google Scholar 

  31. Siddiqi MY, Kronzucker HJ, Britto DT, Glass ADM (1998) Growth of a tomato crop at reduced nutrient concentrations as a strategy to limit eutrophication. J Plant Nutr 21:1879–1895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Haghighi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghighi, M., Heidarian, S. & Teixeira da Silva, J.A. The Effect of Titanium Amendment in N-Withholding Nutrient Solution on Physiological and Photosynthesis Attributes and Micronutrient Uptake of Tomato. Biol Trace Elem Res 150, 381–390 (2012). https://doi.org/10.1007/s12011-012-9481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9481-y

Keywords

Navigation