Skip to main content

Advertisement

Log in

Construction, heterologous expression, partial purification, and in vitro cytotoxicity of the recombinant plantaricin E produced by Lactococcus lactis against Enteropathogenic Escherichia coli K.1.1 and human cervical carcinoma (HeLa) cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum produces bacteriocin called plantaricin that can kill or inhibit other bacteria. Plantaricin E (Pln E), a recombinant bacteriocin, has been successfully constructed and produced by a GRAS host, Lactococcus lactis. A polymerase chain reaction (PCR) overlapping technique has been used to construct a ligation of signal peptide gene, Pln A and bacteriocin encoding gene, Pln E. Furthermore, the fusion fragment were cloned into pNZ8148 vector and transformed into L. lactis NZ3900. Molecular expression study shows that recombinant L. lactis NZ3900 is able to express the mature pln E at transcription level with size of 168 bp. Plantaricin E is purified by ammonium sulphate precipitation followed by gel filtration chromatography. Purified fractions were proven to be active against Enteropathogenic Escherichia coli K.1.1. The other fractions of Pln E also have antibacterial activity against several Gram positive and Gram negative bacteria. Purified recombinant plantaricin E is 3.7 kDa in size. The cytotoxicity assay shows purified Pln E inhibits 46.949 ± 3.338% of HeLa cell lines on 10 ppm dose whilst the metabolite inhibits 53.487 ± 2.957% of HeLa cell line on 100 ppm dose. The IC50 calculation of Pln E metabolite is 107.453 ppm, while the purified protein is 11.613 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kementerian Kesehatan Indonesia (2011) Buletin Diare. [Online] Available from: http://www.depkes.go.id/folder/view/01/structure-publikasi-pusdatin-buletin.htmL. Accessed 10 June 2017

  2. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26:822–880

    Article  CAS  Google Scholar 

  3. Bhunia AK (2011) Foodborne microbial pathogen: mechanism and pathogenesis. Springer, New York

    Google Scholar 

  4. Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nature Rev Microbiol 2:123–140

    Article  CAS  Google Scholar 

  5. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2015) Brock biology of microorganism, 14th edn. Pearson, Boston

    Google Scholar 

  6. Budiarti S (1997) Perlekatan pada sel HEP-2 dan keragaman serotipe O Escherichia coli enteropatogenik isolat Indonesia. B I Ked 29:105–109

    Google Scholar 

  7. Budiarti S, Mubarik NR (2007) Extracellular protease activity of enteropathogenic Escherichia coli on mucin substrate. Hayati J Biosci 14:36–38

    Article  Google Scholar 

  8. Budiarti S (2011) Antibiotic resistance Escherichia coli isolated from faecal of healthy human. J Int Environ Appl Sci 6:359–364

    CAS  Google Scholar 

  9. Borrero J, Jiménez JJ, Gútiez L, Herranz C, Cintas LM, Hernández PE (2011) Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria. J Biotechnol 156:76–86

    Article  CAS  Google Scholar 

  10. Tsapieva A, Duplik N, Suvorov A (2011) Structure of plantaricin locus of Lactobacillus plantarum 8P-A3. Benef Microbes 2:255–261

    Article  CAS  Google Scholar 

  11. Todorov S, Nyati H, Meincken M, Dicks LMT (2007) Partial characterization of bacteriocin AMA-K, produced by Lactobacillus plantarum AMA-K isolated from naturally fermented milk from Zimbabwe. Food Control 18:656–664

    Article  CAS  Google Scholar 

  12. Hata T, Tanaka R, Ohmomo S (2010) Isolation and characterization of plantaricin ASM1: a new bacteriocin produced by Lactobacillus plantarum A-1. Int J Food Microbiol 137:94–99

    Article  CAS  Google Scholar 

  13. Sihombing DE, Arief II, Budiarti S (2015) Application of antimicrobial agents produced by Lactobacillus plantarum IIA-IA5 as natural preservative on beef during room temperature storage. Adv J Food Sci Technol 8:251–255

    Article  CAS  Google Scholar 

  14. Villarante KI, Elegado FB, Iwatani S, Zendo T, Sonomoto K, de Guzman EE (2011) Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilacti K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cell. World J Microbiol Biotechnol 27:975–980

    Article  CAS  Google Scholar 

  15. Avaiyarasi ND, Rafindran AD, Venkatesh P, Arul V (2016) In vitro selection, characterization, and cytotoxic effect of bacteriocin of Lactobacillus sakei GM3 isolated from goat milk. Food Control 69:124–133

    Article  Google Scholar 

  16. Zhao H, Sood R, Jutila A, Bose S, FimLand G, Nissen-Meyer J et al (2006) Interaction of the antimicrobial peptide pheromone plantaricin A with model membranes: implications for a novel mechanism of action. Biochim Biophys Acta 1758:1461–1474

    Article  CAS  Google Scholar 

  17. Paiva AD, de Oliveira MD, dePaula SO, Baracat-Pereira MC, Breukink E, Mantovani HC (2012) Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology 158:2851–2858

    Article  CAS  Google Scholar 

  18. Mustopa AZ, Umami RN, Budiarto RB, Danuri H (2016) Cloning and expression of plantaricin E and F genes of Lactobacillus plantarum S34 isolated from Indonesia traditional-fermented meat (bekasam). Int Food Res J 23:762–769

    CAS  Google Scholar 

  19. Budiarto BR, Mustopa AZ, Indarmawan T (2015) Characterization of partial extracellular protease from bekasam-isolated L. plantarum S31 and its application to hydrolize skimmed-milk with antibacerial property. Int Food Res J 23:340–349

    Google Scholar 

  20. Mustopa AZ (2013) Isolation and characterization of Lactobacillus plantarum S34 from Indonesian traditional food. PhD thesis, Dankook University, Seoul, KR

  21. Kusdianawati K, Mustopa AZ, Suharsono S, Budiarto BR, Fatimah, Danuri H (2015) Construction, expression and purification of recombinant pre-mature peptide of plantaricin F from Lactobacillus plantarum S34 in Escherichia coli. Indones J Agric Sci 16:31–38

    Article  Google Scholar 

  22. Martinez FAC, Balciunas EM, Salgado JM, Dominguez-Gonzales JM, Converti A, Oliveira RPS (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83

    Article  CAS  Google Scholar 

  23. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for good. Nat Rev Microbiol 3:777–788

    Article  CAS  Google Scholar 

  24. Smith L, Hilman JD (2008) Therapeutic potential of type a (I) lantibiotics, a grup of cationic peptide antibiotics. Curr Opin Biotechnol 11:401–408

    CAS  Google Scholar 

  25. Pal G, Srivastava S (2014) Cloning and heterologous expression of plnE, -F, -J and -K genes derived from soil metagenome and purification of active plantaricin peptides. Appl Microbiol Biotechnol 98:1441–1447

    Article  CAS  Google Scholar 

  26. Mustopa AZ, Murtiyaningsih H, Fatimah S (2016) Cloning and heterologous expression of extracellular plantaricin F produced by Lactobacillus plantarum S34 isolated from “Bekasam” in Lactococcus lactis. Microbiol Indones 10:95–106

    Article  Google Scholar 

  27. Lages AC, Mustopa AZ, Sukmarini L, Suharsono (2015) Cloning and expression of plantaricin W produced by Lactobacillus plantarum U10 isolate from ‘Tempoyak’ Indonesian fermented food as immunity protein in Lactococcus lactis. Appl Biochem Biotechnol 177:909–922

    Article  CAS  Google Scholar 

  28. Purramattahu TV, Islam MR, Nishie M, Yanagihara S, Nagao J, Okuda K et al (2012) Enhanced production of nukacin D13E in Lactococcus lactis NZ9000 by the additional expression of immunity genes. Appl Microbiol Biotechnol 93:671–678

    Article  Google Scholar 

  29. Mierau I, Olieman K, Mond J, Smid EJ (2005) Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Fact 4:16

    Article  Google Scholar 

  30. Zhu H, Qu F, Zhu LH (1993) Isolation of genomics DNAs from plants, fungi, and bacteria using benzyl chloride. Nucl Acids Res 21:5279–5280

    Article  CAS  Google Scholar 

  31. Duan K, Dunn NW, Kim WS (1999) Rapid plasmid DNA isolation from Lactococcus lactis using overnight cultures. Biotechnol Tech 13:19–521

    Article  Google Scholar 

  32. Sambrook J, Fritsch EF, Maniatis T (1993) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  33. Sambrook J, Russel D (2002) Molecular cloning: A laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  34. Xie Y, An H, Hao Y, Qin Q, Huang Y, Luo Y et al (2011) Characterization of an anti-Listeria bacteriocin produced by Lactobacillus plantarum LB-B1 isolated from koumiss, a traditionally fermented dairy product from China. Food Control 22:1027–1031

    Article  CAS  Google Scholar 

  35. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standaridizes single disc method. Am J Clin Pathol 45:493–496

    Article  CAS  Google Scholar 

  36. Barbosa MS, Todorov SD, Ivanova IV, Belguesmia Y, Choiset Y, Rabesona H et al (2016) Characterization of a two-peptide plantaricin produced by Lactobacillus plantarum MBSa4 isolated from Brazilian salami. Food Control 60:103–112

    Article  CAS  Google Scholar 

  37. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  Google Scholar 

  38. Abbasiliasi S, Tan JS, Ibrahim TA, Kadkhodaei S, Ng HS, Vakhshiteh F et al (2014) Primary recovery of a bacteriocin-like inhibitory substance derived from Pediococcus acidilacti Kp10 by an aqueous two-phase system. Food Chem 151:93–100

    Article  CAS  Google Scholar 

  39. Nursid M, Wikanta T, Fajarningsih ND, Marraskuranto E (2006) Aktivitas sitotoksik, induksi apoptosisdan ekspresi gen p53 fraksi methanol spons Petrosia cf. nigricans terhadap sel tumor HeLa. JPBKP 1:103–109

    Article  Google Scholar 

  40. Sand SL, Oppegård C, Ohara S, Iijima T, Naderi S, Blomhoff HK et al (2010) Plantaricin A, a peptide pheromone produced by Lactobacillus plantarum, permeabilizes the cell membrane of both normal and cancerous lymphocytes and neuronal cells. Peptides 31:1237–1244

    Article  CAS  Google Scholar 

  41. Wu C, Zhang J, Du G, Chen J (2013) Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. Bioresour Technol 143:238–241

    Article  CAS  Google Scholar 

  42. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG et al (2005) Protein secretion Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4:2

    Article  Google Scholar 

  43. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717

    Article  CAS  Google Scholar 

  44. Borrero J, Jimenez JJ, Gutiez L, Herranz C, Cintas LM, Hernandez PE (2011) Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis. Appl Microbiol Biotechnol 89:131–143

    Article  CAS  Google Scholar 

  45. Todorov SD, van Reenen CA, Dicks LMT (2004) Optimization of bacteriocin production by Lactobacillus plantarum ST13BR, a strain isolated from barley beer. J Gen Appl Microbiol 50:149–157

    Article  CAS  Google Scholar 

  46. Wen LS, Philip K, Ajam N (2016) Purification, characterization and mode of action of plantaricin K25 produced by Lactobacillus plantarum. Food Control 60:430–439

    Article  CAS  Google Scholar 

  47. Rumjuankiat K, Perez RH, Pilasombut K, Keawsompong S, Zendo T, Sonomoto K et al (2015) Purification and characterization of a novel plantaricin, KL-1Y, from Lactobacillus plantarum KL-1. World J Microbiol Biotechnol 31:983–994

    Article  CAS  Google Scholar 

  48. Pal G, Srivastava S (2014) Inhibitory effect of plantaricin peptides (Pln E/F and J/K) against Escherichia coli. World J Microbiol Biotechnol 30:2829–2837

    Article  CAS  Google Scholar 

  49. Van Meerloo J, Kaspers GL, Cloos J (2011) Cell sensitivity assay: the MTT assay. In: Cree IA, 2nd edn. Springer Science + Business Media (LLC), Portsmouth

    Google Scholar 

Download references

Acknowledgements

This research was funded by Insentif Riset Sistem Inovasi Nasional (INSINAS) program from Ministry of Research, Technology, and Higher Education fiscal year 2016–2017 and KKP3N Program from Indonesian Agency for Agricultural Research and Development (IAARD), Ministry of Agriculture fiscal year 2014–2015. All facilities were supported by Biotechnology-Indonesian Institute of Science (LIPI) and Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), Ministry of Agriculture. The authors would like to thank to Muhminah for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apon Zaenal Mustopa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustopa, A.Z., Mariyah, S., Fatimah et al. Construction, heterologous expression, partial purification, and in vitro cytotoxicity of the recombinant plantaricin E produced by Lactococcus lactis against Enteropathogenic Escherichia coli K.1.1 and human cervical carcinoma (HeLa) cells. Mol Biol Rep 45, 1235–1244 (2018). https://doi.org/10.1007/s11033-018-4277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4277-6

Keywords

Navigation