Skip to main content
Log in

Cloning and Expression of Plantaricin W Produced by Lactobacillus plantarum U10 Isolate from “Tempoyak” Indonesian Fermented Food as Immunity Protein in Lactococcus lactis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plantaricins, one of bacteriocin produced by Lactobacillus plantarum, are already known to have activities against several pathogenic bacterium. L. plantarum U10 isolated from “tempoyak,” an Indonesian fermented food, produced one kind of plantaricin designated as plantaricin W (plnW). The plnW is suggested as a putative membrane location of protein and has similar conserved motif which is important as immunity to bacteriocin itself. Thus, due to study about this plantaricin, several constructs have been cloned and protein was analyzed in Lactococcus lactis. In this study, plnW gene was successfully cloned into vector NICE system pNZ8148 and created the transformant named L. lactis NZ3900 pNZ8148-WU10. PlnW protein was 25.3 kDa in size. The concentration of expressed protein was significantly increased by 10 ng/mL nisin induction. Furthermore, PlnW exhibited protease activity with value of 2.22 ± 0.05 U/mL and specific activity about 1.65 ± 0.03 U/mg protein with 50 ng/mL nisin induction. Immunity study showed that the PlnW had immunity activity especially against plantaricin and rendered L. lactis recombinant an immunity broadly to other bacteriocins such as pediocin, fermentcin, and acidocin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amiza, M. A., Zakiah, J., Ng, L. K., & Lai, K. W. (2006). Fermentation of tempoyak using isolated tempoyak culture. Res. J. Mirobiol., 1, 243–254.

    Google Scholar 

  2. Yuliana, N., & Garcia, V. V. (2009). Influence of Pediococcus acidilactici as a starter on the flavor of tempoyak (fermented durian). Indian Journal of Biotechnology, 8, 304–310.

    CAS  Google Scholar 

  3. Richard, C., Canon, R., Naghmouchi, K., Bertrand, D., Prevost, H., & Drider, D. (2006). Evidence on correlation between number of disulfide bridge and toxicity of class IIa bacteriocins. Food Microbiology, 23, 175–183.

    Article  CAS  Google Scholar 

  4. Gautam, N., Sharma, N., & Ahlawat, O. P. (2014). Purification and characterization of bacteriocin produced by Lactobacillus brevis UN isolated dhulliachar: a traditional food product of Northeast India. Indian Journal of Microbiology, 54, 185–189.

    Article  CAS  Google Scholar 

  5. Aka-Gbezo, S., N’Guessan, F. K., N’Dédé Djeni, T., Djè, M. K., & Bonfoh, B. (2014). Partial characterization of bacteriocins from two Pediococcus acidilactici strains isolated during traditional sorghum beer processing in Côte d’Ivoire. Adv Microbiol., 4, 1250–1259.

    Article  Google Scholar 

  6. Mustopa, A. Z. (2010). Isolation and characterization of Lactobacillus plantarum S34 from Indonesian traditional food. PhD thesis, Dankook University, Seoul, KR.

  7. Nwuche, C. O. (2013). Isolation of bacteriocin-producing lactic acid bacteria from ‘ugba’ and ‘okpiye’, two locally fermented Nigerian food condiments. Brazilian Archives of Biology and Technology, 56, 101–106.

    Article  CAS  Google Scholar 

  8. Mustopa, A. Z., & Fatimah. (2014). Diversity of lactic acid bacteria isolated from Indonesian traditional fermented foods. Microbiol. Indones., 8, 48–57.

  9. Diep, D. B., Havarstein, L. S., & Nes, I. F. (1996). Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. Journal of Bacteriology, 178, 4472–4483.

    CAS  Google Scholar 

  10. Tsapieva, A., Duplik, N., & Suvorov, A. (2011). Structure of plantaricin locus of Lactobacillus plantarum 8P-A3. Benef. Microbes., 2, 255–261.

    Article  CAS  Google Scholar 

  11. Kjos, M., Snipen, L., Salchian, Z., Nes, I. F., & Diep, D. B. (2010). The Abi proteins and their involvement in bacteriocin self-immunity. Journal of Bacteriology, 8, 2068–2076.

    Article  Google Scholar 

  12. Drider, D., Fimland, G., Heehard, Y., McMullen, L. M., & Prevost, H. (2006). The continuing story of class IIa bacteriocins. Microbiology and Molecular Biology Reviews, 70, 564–582.

    Article  CAS  Google Scholar 

  13. Rasmussen, E. (2011). Study of two-peptide bacteriocins and their immunity genes from lactobacillus. Master thesis:Norwegian University of Life Science, As, NO.

    Google Scholar 

  14. Smith, L., & Hillman, J. D. (2008). Therapeutic potential of type a (I) lantibiotics, a group of cationic peptide antibiotics. Current Opinion in Microbiology, 11, 401–408.

  15. Puramattathu, T. V., Islam, M. R., Nishie, M., Yanagihara, S., Nagao, J., Okuda, K., Zendo, T., Nakayama, J., & Sonomoto, K. (2012). Enhanced production of nukacin D13E in Lactococcus lactis NZ9000 by the additional expression of immunity genes. Applied Microbiology and Biotechnology, 93, 671–8.

  16. Pal, G., & Sheela, S. (2014). Cloning and heterologous expression of plnE, -F, -J and –K genes derived from soil metagenome and purification of active plantaricin peptides. Applied Microbiology and Biotechnology, 98, 1441–1447.

  17. Kusdianawati., Mustopa, A. Z., Suharsono., Budiarto, B. R., Fatimah., & Danuri, H. (2015). Construction, expression and purification of recombinant pre-mature peptide of plantaricin f from Lactobacillus plantarum S34 in Escherichia coli. IJAS, 16, 31–38.

  18. Straume, D., Axelsson, L., Nes, I. F., & Diep, D. B. (2006). Improved expression and purification of the correctly folded response regulator PlnC from lactobacilli. Journal of Microbiological Methods, 67, 193–201.

  19. Van Reenen, C. A., Chikindas, M. L., Van Zyl, W. H., & Dicks, L. M. T. (2002). Expression of the immunity protein of plantaricin 423, produced by Lactobacillus plantarum 423, and analysis of the plasmid encoding the bacteriocin. International Journal of Food Microbiology, 81, 29–40.

  20. Sambrook, J., Fritsch, F. F., & Maniatis, T. (1989). Molecular Cloning: a laboratory manual (2nd ed.,). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

  21. Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: a laboratory manual (vol. 3). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

  22. Duan, K., Dunn, N. W., & Kim, W. S. (1999). Rapid plasmid DNA isolation from Lactococcus lactis using overnight cultures. Biotechnol. Techniques. 13, 519–521.

  23. Omasits, U., Ahrens, C. H., Muller, S., & Wollscheid, B. (2013). Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 30, 844–846.

  24. Holo, H., & Nes, I. F. (1995). Transformation of Lactococcus by electroporation. Methods in Molecular Biology, 47, 195–199.

  25. Wu, C., Zhang, J., Du, G, & Chen, J. (2013). Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. Bioresource Technology, 143, 238–241.

  26. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

  27. Kleiner, D. E., & Stevenson, W. G. S. (1994). Quantitative zymography: detection of picogram quantities of gelatinases. Analytical Chemistry, 218, 325–329.

  28. Enyard, C. C. (2009). Sigma's non-specific protease activity assay - casein as a substrate. Journal of Visualized Experiments, 17, 899.

  29. de Ruyter, P. G., Kuipers, O. P., & de Vos, W. M. (1996). Controlled gene expression system for Lactococcus lactis with the food-grade inducer nisin. Applied and Environmental Microbiology, 62, 3662–3667.

  30. Mierau, I., & Kleerebezem, M. (2005). 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Applied Microbiology and Biotechnology, 68, 705–717.

  31. Sorvig, E., Gronqvist, S., Naterstad, K., Mathiesen, G., Eijsink, V. G. H., & Axelsson, L. (2003). Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum. FEMS Microbiology Letters, 229, 119–126.

  32. Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G., Luesink, E. J., & de Vos, W. M. (1995). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. The Journal of Biological Chemistry, 270, 27299–27304.

  33. Pei, J., Mitchell, D. A., Dixon, J. E., & Grishin, N. V. (2011). Expansion of type II CAAX protease reveals evolutionary origin of γ-secretase subunit APH-1. Journal of Molecular Biology, 410, 18–26.

  34. Mironczuk, A. M., Krasowka, A., Murzyn, A., Plachetka, M., & Lukaszewicz, M. (2012). Production of the Bacillus licheniformis SubC protease using Lactococcus lactis NICE expression system. SpringerPlus., 1, 54.

  35. Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of protein. Journal of Molecular Biology, 157, 105–132.

  36. Choudhuri, S. (2014). Bioinformatics for beginners: genes, genomes, molecular evolution, database and analytical tools. UK: Elsevier.

  37. Ra, R., Beerthuyzen, M. M., de Vos, W. M., Saris, P. E., & Kuipers, O. P. (1999). Effects of gene disruptions in the nisin gene cluster of Lactococcus lactis on nisin production and producer immunity. Microbiol., 145, 1227–1233.

  38. Stein, T., Heinzmann, S., Solovieva, I., & Entian, K. D. (2003). Function of Lactococcus lactis nisin immunity genes nisI and nis FEG after coordinated expression in the surrogate host Bacillus subtilis. The Journal of Biological Chemistry, 278, 89–94.

  39. Venema, K., Haverkort, R. E., Abee, T., Haandrikman, A. J., Leenhouts, K. J., de Leij, L., Venema, G., & Kok, J. (1994). Mode of action of LciA, the lactococcin A immunity protein. Molecular Microbiology, 14, 521–532.

  40. Sedgley, C. M., Clewell, D. B., & Flannagan, S. E. (2009). Plasmid pAMS1-encoded, bacteriocin-related “Siblicide” in Enterococcus faecalis. Journal of Bacteriology, 191, 3183–3188.

  41. Butcher, B. G., & Helmann, J. D. (2006). Identification of Bacillus subtilis σW-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacili. Molecular Microbiology, 60, 765–782.

  42. Ellermeier, C. D., & Losick, R. (2006). Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes & Development, 20, 1911–1922.

Download references

Acknowledgments

This study was supported by Competitive Program 2014 from Indonesian Institute of Science (LIPI). The authors would like to thank Dr. Andi Utama (Stem Cell and Cancer Institute, Kalbe Farma) for kindly supplying E.coli MC1061 and L.lactis NZ3900. They also thank Prof. Dae-Kyung Kang (Dankook University, Korea) for kindly supplying Lactobacillus acidophilus C99.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apon Zaenal Mustopa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lages, A.C., Mustopa, A.Z., Sukmarini, L. et al. Cloning and Expression of Plantaricin W Produced by Lactobacillus plantarum U10 Isolate from “Tempoyak” Indonesian Fermented Food as Immunity Protein in Lactococcus lactis . Appl Biochem Biotechnol 177, 909–922 (2015). https://doi.org/10.1007/s12010-015-1786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1786-9

Keywords

Navigation