Skip to main content
Log in

Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Heat shock factors (HSFs) play key roles in the response to abiotic stress in eukaryotes. In this study, 35 DcHSFs were identified from carrot (Daucus carota L.) based on the carrot genome database. All 35 DcHSFs were divided into three classes (A, B, and C) according to the structure and phylogenetic relationships of four different plants, namely, Arabidopsis thaliana, Vitis vinifera, Brassica rapa, and Oryza sativa. Comparative analysis of algae, gymnosperms, and angiosperms indicated that the numbers of HSF transcription factors were related to the plant’s evolution. The expression profiles of five DcHsf genes (DcHsf 01, DcHsf 02, DcHsf 09, DcHsf 10, and DcHsf 16), which selected from each subfamily (A, B, and C), were detected by quantitative real-time PCR under abiotic stresses (cold, heat, high salinity, and drought) in two carrot cultivars, D. carota L. cvs. Kurodagosun and Junchuanhong. The expression levels of DcHsfs were markedly increased by heat stress, except that of DcHsf 10, which was down regulated. The expression profiles of different DcHsfs in the same class also differed under various stress treatments. The expression profiles of these DcHsfs were also different in tissues of two carrot cultivars. This study is the first to identify and characterize the DcHSF family transcription factors in plants of Apiaceae using whole-genome analysis. The results of this study provide an in-depth understanding of the DcHSF family transcription factors’ structure, function, and evolution in carrot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iorizzo M, Senalik DA, Grzebelus D, Bowman M et al (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 12:389. doi:10.1186/1471-2164-12-389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Xu ZS, Tan HW, Wang F, Hou XL, Xiong AS (2014) CarrotDB: a genomic and transcriptomic database for carrot. Database. doi:10.1093/database/bau096

    Google Scholar 

  3. Simon P, Freeman R, Vieira J, Boiteux L, Briard M, Nothnagel T, Michalik B, Kwon YS (2008) Carrot. In: Prohens J, Nuez F (eds) Vegetables II, vol 2. Handbook of Plant Breeding. Springer New York, pp 327-357. doi:10.1007/978-0-387-74110-9_8

  4. Claire HL, Hiroshi AM (2014) Genetic and phenological variation of tocochromanol (vitamin E) content in wild (Daucus carota L. var. carota) and domesticated carrot (D. carota L. var. sativa). Hortic Res 1(15):1–6

    Google Scholar 

  5. Simon PW (2000) Domestication, historical development, and modern breeding of carrot. Plant Breed Rev 19:157–190

    Google Scholar 

  6. Yokotani N, Ichikawa T, Kondou Y, Iwabuchi M, Matsui M, Hirochika H, Oda K (2013) Role of the rice transcription factor JAmyb in abiotic stress response. J Plant Res 126(1):131–139. doi:10.1007/s10265-012-0501-y

    Article  CAS  PubMed  Google Scholar 

  7. Singh KB, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5(5):430–436

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803. doi:10.1146/annurev.arplant.57.032905.105444

    Article  CAS  Google Scholar 

  9. Figueiredo DD, Barros PM, Cordeiro AM, Serra TS, Lourenço T, Chander S, Oliveira MM, Saibo NJ (2012) Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. J Exp Bot 63(10):3643–3656

    Article  CAS  PubMed  Google Scholar 

  10. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499

    Article  CAS  Google Scholar 

  11. Cao YR, Chen SY, Zhang JS (2008) Ethylene signaling regulates salt stress response: an overview. Plant Signal Behav 3(10):761–763

    Article  PubMed Central  PubMed  Google Scholar 

  12. Chauhan H, Khurana N, Agarwal P, Khurana P (2011) Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics 286(2):171–187

    Article  CAS  PubMed  Google Scholar 

  13. Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130(3):1143–1151. doi:10.1104/pp.006858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kumar M, Busch W, Birke H, Kemmerling B, Nurnberger T, Schoffl F (2009) Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant 2(1):152–165. doi:10.1093/mp/ssn095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hsu SF, Lai HC, Jinn TL (2010) Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiol 153(2):773–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55(1):1151–1191

    Article  CAS  PubMed  Google Scholar 

  17. Morimoto RI (2002) Dynamic remodeling of transcription complexes by molecular chaperones. Cell 110(3):281–284

    Article  CAS  PubMed  Google Scholar 

  18. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    Article  CAS  PubMed  Google Scholar 

  19. Gong BH, Yi J, Wu J, Sui JJ et al (2014) LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana. Plant Cell Rep 33(9):1519–1533

    Article  CAS  PubMed  Google Scholar 

  20. Praumlndl R, Hinderhofer K, Eggers-Schumacher G, Schoumlffl F (1998) HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen Genet 258(3):269–278

    Article  Google Scholar 

  21. Baniwal SK, Bharti K, Chan KY, Fauth M et al (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29(4):471–487

    Article  CAS  PubMed  Google Scholar 

  22. Björk JK, Sistonen L (2010) Regulation of the members of the mammalian heat shock factor family. FEBS J 277(20):4126–4139

    Article  PubMed  Google Scholar 

  23. Fujimoto M, Nakai A (2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277(20):4112–4125

    Article  CAS  PubMed  Google Scholar 

  24. Song X, Liu G, Duan W, Liu T, Huang Z, Ren J, Li Y, Hou X (2014) Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Chinese cabbage. Mol Genet Genomics 289(4):541–551. doi:10.1007/s00438-014-0833-5

    Article  CAS  PubMed  Google Scholar 

  25. Yan H, Zhang S, Li XY, Yuan FH, Qiu W, Chen YG, Weng SP, He JG, Chen YH (2014) Identification and functional characterization of heat shock transcription factor1 in Litopenaeus vannamei. Fish Shellfish Immunol 37(1):184–192

    Article  CAS  PubMed  Google Scholar 

  26. Heerklotz D, Döring P, Bonzelius F, Winkelhaus S, Nover L (2001) The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol 21(5):1759–1768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Schultheiss J, Kunert O, Gase U, Scharf KD, Nover L, Ruterjans H (1996) Solution structure of the DNA-binding domain of the tomato heat-stress transcription factor HSF24. Eur J Biochem 236(3):911–921

    Article  CAS  PubMed  Google Scholar 

  28. Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819(2):104–119. doi:10.1016/j.bbagrm.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  29. Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J (2008) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics 35(2):105–118. doi:10.1016/s1673-8527(08)60016-8

    Article  CAS  PubMed  Google Scholar 

  30. Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem 47(9):785–795. doi:10.1016/j.plaphy.2009.05.003

    Article  CAS  PubMed  Google Scholar 

  31. Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ (2011) Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics 12:76. doi:10.1186/1471-2164-12-76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wang F, Dong Q, Jiang H, Zhu S, Chen B, Xiang Y (2012) Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Mol Biol Rep 39(2):1877–1886. doi:10.1007/s11033-011-0933-9

    Article  PubMed  Google Scholar 

  33. Chung E, Kim KM, Lee JH (2013) Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max. J Genet Genomics 40(3):127–135

    Article  CAS  PubMed  Google Scholar 

  34. Rhee SY, Beavis W, Berardini TZ et al (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31(1):224–228

    Article  CAS  PubMed  Google Scholar 

  35. Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38(Database issue):D822–D827. doi:10.1093/nar/gkp805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(D1):D302–D305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. La CT, Kiemer L, Mølgaard A, Gupta R, Skriver K, Brunak S (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17(6):527–536

    Article  Google Scholar 

  38. Ba ANN, Pogoutse A, Provart N, Moses AM (2009) NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinform 10(1):202

    Article  Google Scholar 

  39. Tamura KPD, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2028(2010):2731–2739

    Article  Google Scholar 

  40. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. 2-D proteome analysis protocols. Springer, New York, pp 531–552

    Google Scholar 

  41. Bailey TL, Boden M, Buske FA, Frith M et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Li MY, Wang F, Jiang Q, Ma J, Xiong AS (2014) Identification of SSRs and differentially expressed genes in two cultivars of celery (Apium graveolens L.) by deep transcriptome sequencing. Hortic Res 1(10):1–9

    Google Scholar 

  43. Wendel J (2000) Genome evolution in polyploids. In: Doyle J, Gaut B (eds) Plant molecular evolution. Springer, Dordrecht, pp 225–249. doi:10.1007/978-94-011-4221-2_12

    Chapter  Google Scholar 

  44. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12(24):3788–3796

    Article  CAS  PubMed  Google Scholar 

  45. Clos J, Westwood JT, Becker PB, Wilson S, Lambert K, Wu C (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63(5):1085–1097

    Article  CAS  PubMed  Google Scholar 

  46. Sorger PK, Pelham HR (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54(6):855–864

    Article  CAS  PubMed  Google Scholar 

  47. Wiederrecht G, Seto D, Parker CS (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54(6):841–853

    Article  CAS  PubMed  Google Scholar 

  48. Rabindran SK, Giorgi G, Clos J, Wu C (1991) Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci 88(16):6906–6910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Giorno F, Guerriero G, Baric S, Mariani C (2012) Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis. BMC Genomics 13(1):639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23(2):741–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815. doi:10.1038/35048692

    Article  Google Scholar 

  52. Goff SA, Ricke D, Lan TH, Presting G et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100. doi:10.1126/science.1068275

    Article  CAS  PubMed  Google Scholar 

  53. Yu J, Hu S, Wang J, Wong GK, Li S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92. doi:10.1126/science.1068037

    Article  CAS  PubMed  Google Scholar 

  54. Velasco R, Zharkikh A, Troggio M, Cartwright DA et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2(12):e1326. doi:10.1371/journal.pone.0001326

    Article  PubMed Central  PubMed  Google Scholar 

  55. Jaillon O, Aury JM, Noel B, Policriti A et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467. doi:10.1038/nature06148

    Article  CAS  PubMed  Google Scholar 

  56. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345):97–100

    Article  CAS  PubMed  Google Scholar 

  57. Zhuang J, Cai B, Peng RH, Zhu B, Jin XF et al (2008) Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophys Res Commun 371(3):468–474. doi:10.1016/j.bbrc.2008.04.087

    Article  CAS  PubMed  Google Scholar 

  58. Zhuang J, Peng RH, Cheng ZM, Zhang J, Cai B et al (2009) Genome-wide analysis of the putative AP2/ERF family genes in Vitis vinifera. Sci Hortic 123(1):73–81

    Article  CAS  Google Scholar 

  59. Li MY, Wang F, Jiang Q, Li R, Ma J, Xiong AS (2013) Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and elucidates their potential function in Chinese cabbage (Brassica rapa ssp. pekinensis). Plant Mol Biol Rep 31(4):1002–1011

    Article  CAS  Google Scholar 

  60. Ma J, Wang F, Li MY, Jiang Q, Tan GF, Xiong AS (2014) Genome wide analysis of the NAC transcription factor family in Chinese cabbage to elucidate responses to temperature stress. Sci Hortic 165:82–90

    Article  CAS  Google Scholar 

  61. Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1–2):30–44. doi:10.1016/j.gene.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  62. Ma J, Xu ZS, Wang F, Tan GF, Li MY, Xiong AS (2014) Genome-wide analysis of HSF family transcription factors and their responses to abiotic stresses in two Chinese cabbage varieties. Acta Physiol Plant 36(2):513–523

    Article  CAS  Google Scholar 

  63. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252. doi:10.1016/j.tplants.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  64. Hu W, Hu G, Han B (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176(4):583–590

    Article  CAS  Google Scholar 

  65. Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K-D (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316

    Article  CAS  PubMed  Google Scholar 

  66. Yoshida T, Ohama N, Nakajima J, Kidokoro S et al (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286(5–6):321–332

    Article  CAS  PubMed  Google Scholar 

  67. Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58(12):3373–3383

    Article  CAS  PubMed  Google Scholar 

  68. Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227(5):957–967

    Article  CAS  PubMed  Google Scholar 

  69. Li HY, Chang CS, Lu LS, Liu CA, Chan MT, Charng YY (2003) Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato. Bot Bull Acad Sin 44:129–140

  70. Klie M, Debener T (2011) Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (Rosa hybrida). BMC Research Notes 4:518. doi:10.1186/1756-0500-4-518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Wieczorek P, Wrzesinska B, Obrepalska-Steplowska A (2013) Assessment of reference gene stability influenced by extremely divergent disease symptoms in Solanum lycopersicum L. J Virol Methods 194(1–2):161–168. doi:10.1016/j.jviromet.2013.08.010

    Article  CAS  PubMed  Google Scholar 

  72. Wang M, Wang Q, Zhang B (2013) Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.). Gene 530(1):44–50. doi:10.1016/j.gene.2013.07.084

    Article  CAS  PubMed  Google Scholar 

  73. Gutierrez L, Mauriat M, Pelloux J, Bellini C, Van Wuytswinkel O (2008) Towards a systematic validation of references in real-time rt-PCR. Plant Cell 20(7):1734–1735. doi:10.1105/tpc.108.059774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Dong MT, Zhang XW, Chi XY, Mou SL et al (2012) The validity of a reference gene is highly dependent on the experimental conditions in green alga Ulva linza. Curr Genet 58(1):13–20

    Article  CAS  PubMed  Google Scholar 

  75. Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM (2006) Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J Biol Chem 281(16):10752–10759. doi:10.1074/jbc.M510535200

    Article  CAS  PubMed  Google Scholar 

  76. Victor M, Benecke BJ (1998) Expression levels of heat shock factors are not functionally coupled to the rate of expression of heat shock genes. Mol Biol Rep 25(3):135–141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by New Century Excellent Talents in University (NCET-11-0670), Jiangsu Natural Science Foundation (BK20130027), National Natural Science Foundation of China (31272175), China Postdoctoral Science Foundation (2014M551609); Priority Academic Program Development of Jiangsu Higher Education Institutions, and Jiangsu Shuangchuang Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Sheng Xiong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1083 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, MY., Wang, F. et al. Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. Mol Biol Rep 42, 893–905 (2015). https://doi.org/10.1007/s11033-014-3826-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3826-x

Keywords

Navigation