Skip to main content
Log in

RNAi Mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Curcin, a type I ribosomal inhibiting protein-RIP, encoded by curcin precursor gene, is a phytotoxin present in Jatropha (Jatropha curcas L.). Here, we report designing of RNAi construct for the curcin precursor gene and further its genetic transformation of Jatropha to reduce its transcript expression. Curcin precursor gene was first cloned from Jatropha strain DARL-2 and part of the gene sequence was cloned in sense and antisense orientation separated by an intron sequence in plant expression binary vector pRI101 AN. The construction of the RNAi vector was confirmed by double digestion and nucleotide sequencing. The vector was then mobilized into Agrobacterium tumefaciens strain GV 3101 and used for tissue culture independent in planta transformation protocol optimized for Jatropha. Germinating seeds were injured with a needle before infection with Agrobacterium and then transferred to sterilized sand medium. The seedlings were grown for 90 days and genomic DNA was isolated from leaves for transgenic confirmation based on real time PCR with NPT II specific dual labeled probe. Result of the transgenic confirmation analysis revealed presence of the gene silencing construct in ten out of 30 tested seedlings. Further, quantitative transcript expression analysis of the curcin precursor gene revealed reduction in the transcript abundance by more than 98 % to undetectable level. The transgenic plants are being grown in containment for further studies on reduction in curcin protein content in Jatropha seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Openshaw K (2000) A review of Jatropha curcas: an oil plant unfulfilled promise. Biomass Bioenergy 19:1–15

    Article  Google Scholar 

  2. Nambisan P (2007) Biotechnological interventions in Jatropha for biodiesel production. Curr Sci 93:1347–1348

    Google Scholar 

  3. Kywe TT, Oo MM (2009) Production of biodiesel from Jatropha oil (Jatropha curcas) in pilot plant. World Academy Sci Eng Technol 50:477–483

    Google Scholar 

  4. King AJ, He W, Cuevas JA, Freudenberger M, Ramiaramanana D, Graham IA (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905

    Article  CAS  PubMed  Google Scholar 

  5. Barbieri L, BattelliM Stirpe F (1993) Ribosome-inactivating protein from plants. Biochim Biophy Acta 1154:237–282

    Article  CAS  Google Scholar 

  6. Lin J, Chen Y, Xu Y, Yan F, Tang L, Chen F (2003) Cloning and expression of curcin, a ribosome-inactivating protein from the seeds of Jatropha curcas. Acta Bot Sin 45:858–863

    CAS  Google Scholar 

  7. Qin W, Huang M-X, Ying X, Zhang X-S, Fang C (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30:351–357

    Article  PubMed  Google Scholar 

  8. Martı′nez-Herrera J, Siddhuraju P, Francis G, Davila-Ortiz G, Becker K (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96:80–89

    Article  Google Scholar 

  9. He W, King AJ, Khan MA, Cuevas JA, Ramiaramanana D, Graham IA (2011) Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiol Biochem 49:1183–1190

    Article  CAS  PubMed  Google Scholar 

  10. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  11. Ye J, Qu J, Bui HTN, Chua NH (2009) Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing. Plant Biotechnol J 7:964–976

    Article  CAS  PubMed  Google Scholar 

  12. Zhong CY, Li FW, Hui ZM, Cheng XQ. 2010. Jatropha curcas curcin genes, tissue-specific promoters and generation of curcin-deficient transgenic Jatropha plants. WIPO Patent Application SG2010/000206, 2010

  13. Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium mediated techniques. Plant Cell Rep 23:780–789

    Article  CAS  PubMed  Google Scholar 

  14. Deore AC, Johnson ST (2008) High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel plant. Plant Biotechnol Rep 2:7–11

    Article  Google Scholar 

  15. Kumar N, Vijay AKG, Sudheer PDVN, Sarkar T, Reddy MP, Radhakrishnan T, Kaul T, Reddy MK, Sopori SK (2010) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crops Prod 32:41–47

    Article  CAS  Google Scholar 

  16. Sujatha M, Makkar HPS, Becker K (2005) Shoot bud proliferation from axillary nodes and leaf sections of non-toxic Jatropha curcas L. Plant Growth Regul 47:83–90

    Article  CAS  Google Scholar 

  17. Datta MM, Mukherjee P, Ghosh B, Jha TB (2007) In vitro clonal propagation of biodiesel plant (Jatropha curcas L.). Curr Sci 93:1438–1442

    CAS  Google Scholar 

  18. Thepsamran N, Thepsithar C, Thongpukdee A (2008) In vitro induction of shoots and roots from Jatropha curcas L. explants. J Horticult Sci Biotechnol 83:106–112

    CAS  Google Scholar 

  19. Li M, Li H, Jiang H, Pan X, Wu G (2008) Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tissue Org Cult 92:173–181

    Article  CAS  Google Scholar 

  20. Keshamma E, Sreevathsa R, Manoj Kumar A, Reddy KN, Manjulatha M, Shanmugam NB, Kumar ARV, Udayakumar M (2012) Agrobacterium-mediated in planta transformation of field bean (Lablab purpureus L.) and recovery of stable transgenic plants expressing the cry1AcF gene. Plant Mol Biol Rep 30:67–78

    Article  CAS  Google Scholar 

  21. Bent AF (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  23. Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, Martin O, Kuznetsov D, Falquet L (2007) MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35:W433–W437

    Article  PubMed Central  PubMed  Google Scholar 

  24. Patade VY, Bhargava S, Suprasanna P (2012) Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves. Mol Biol Rep 39:3311–3318

    Article  CAS  PubMed  Google Scholar 

  25. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologists programmers. In: Krawetzs S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using a real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  27. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) “ViennaRNA package 2.0″. Algorithms Mol Biol. doi:10.1186/1748-7188-6-26

    PubMed Central  PubMed  Google Scholar 

  28. Makkar HPS, Becker K (1999) Nutritional studies on rats and fish (carp Cyprinus carpio) fed diets containing unheated and heated Jatropha curcas meal of a non-toxic provenanace. Plant Foods Hum Nutr 53:183–192

    Article  CAS  PubMed  Google Scholar 

  29. Rakshit KD, Darukeshwara J, Raj KRR, Narasimhamurthy K, Saibaba P, Bhagya S (2008) Toxicity studies of detoxified Jatropha meal (Jatropha curcas) in rats. Food Chem Toxicol 46:3621–3625

    Article  CAS  PubMed  Google Scholar 

  30. Yin, ZC, Wu, Li Fang, Mao HZ, Qiu CX (2010) Jatropha curcas curcin genes, tissue-specific promoters and generation of curcin-deficient transgenic Jatropha plants. WIPO Patent Application WO/2010/140981, 2010

  31. Huang M-X, Hou P, Wei Q, Xu Y, Chen F (2008) A ribosome-inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant Growth Regul 54:115–123

    Article  CAS  Google Scholar 

  32. Palle SR, Campbell LM, Pandeya D, Puckhaber L, Tollack LK, Marcel S, Sundaram S, Stipanovic RD, Wedegaertner TC, Hinze L, Rathore KS (2013) RNAi-Mediated ultra-low gossypol cottonseed trait: performance of transgenic lines under field conditions. Plant Biotechnol J 11:296–304

    Article  CAS  PubMed  Google Scholar 

  33. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and highthroughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research fellowship from DRDO to Deepti Khatri and Kamal Kumar is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Yadav Patade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 1669 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patade, V.Y., Khatri, D., Kumar, K. et al. RNAi Mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.). Mol Biol Rep 41, 4305–4312 (2014). https://doi.org/10.1007/s11033-014-3301-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3301-8

Keywords

Navigation